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The pyramid of knowledge and the roots of 
hydrology in common sense and philosophy 
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Graph from Koutsoyiannis (2014a) 
adapted from Gauch (2003) 



Heraclitus: Change and randomness 
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Πάντα ῥεῖ 
Everything flows 

(Heraclitus; quoted in Plato’s Cratylus, 
339-340) 

Αἰών παῖς ἐστι παίζων πεσσεύων  
Time is a child playing, throwing dice 

(Heraclitus; Fragment 52) 

Heraclitus 
ca. 540-480 BC 



Aristotle: Change and nature of precision 
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Μεταβάλλει τῷ χρόνῳ πάντα 
All is changing in the course of time 

(Aristotle; Meteorologica, I.14, 353a 16)  

Aristotle 
384 – 322 BC 
(wikipedia) 

Πεπαιδευμένου γάρ ἐστιν ἐπὶ 
τοσοῦτον τἀκριβὲς ἐπιζητεῖν καθ᾽ 
ἕκαστον γένος, ἐφ᾽ ὅσον ἡ τοῦ 
πράγματος φύσις ἐπιδέχεται 

Ιt is the mark of an educated man to 
look for precision in each class of things 
just so far as the nature of the subject 
admits 

(Aristotle, Nicomachean Ethics 1094b)  
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Change and 
predictability 

Simple systems – Short time horizons 
Important but trivial 

Complex systems – Long time horizons 
Most interesting 

Change 

Predictable  
(regular) 

Unpredictable  
(random) 

Purely random 
e.g. consecutive 
outcomes of dice 

Non-periodic 
e.g. acceleration of 

a falling body 

Periodic 
e.g. daily and 
annual cycles 

Structured 
random  

e.g. climatic 
fluctuations 



Decision making under uncertainty 

 The type of change that can be predicted with  
precision is usually trivial.  

 Also, decision making under certainty is mostly trivial. 

 History teaches that while understanding and prediction are good 
advisers for decisions and actions, neither of them is a 
prerequisite.  

 According to Aristotle, what is needed as a guide to human 
decisions and actions is Orthos Logos (Recta Ratio, or Right 
Reason). 

 Science, including hydrology, can contribute to societal progress 
by promoting Orthos Logos. 
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Ἀνερρίφθω κύβος  Iacta alea est  
Let the die be cast The die has been cast 
[Plutarch’s version] [Suetonius’s version] 
(Julius Caesar, 49 BC, when crossing Rubicon River) 



Social perception of contemporary changes  

 The current acceleration of change, mostly due to 
unprecedented human achievements in technology, 
inevitably results in increased uncertainty.  

 In turn, the increased uncertainty makes the society 
apprehensive about the future, insecure and credulous to a 
developing future-telling industry.  

 Several scientific disciplines, including hydrology, tend to 
become part of this industry.  

 The social demand for certainties, no matter if these are 
delusional, is combined by a misconception in the scientific 
community (cf. Taylor and Ravetz, 2013): to confuse science 
with removing uncertainty. 

 This has been particularly the case in the climate change 
industry and the part of hydrology related to it. 
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Future-telling industries: From Delphi and 
Pythia to modern climate predictions 
 Pythia’s power relied on ambiguous predictions: 

“ἤξεις ἀφήξεις οὐ θνήξεις ἐν πολέμω” or “you 
will go you will come not in the war you will 
die” (put a comma before or after “not”). 

 Modern climate predictions (or “projections”) 
owe their success to the distant time horizon to 
which they refer (e.g. 2080, 2100, etc.); this 
makes them (temporarily) resistant to 
falsifiability. 
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Climate model outputs 

Pythia inspired by 
pneuma rising from 
below (from wikipedia) 

(wikipedia) 
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From 2100 AD 
(Battisti and Naylor, 
Science, 2009)... 

Indeed, time horizons of climate predictions are 
long… 

...to 100 000 AD 
(Shaffer et al., 
PNAS, 2009) 

... to 3000 AD 
(Solomon et al., 
Nature Geoscience, 
2009) 



How good have climate predictions been so far?  

D. Koutsoyiannis, Hydrology, society, change and uncertainty 11 

See details in 
Koutsoyiannis et 
al. (2008, 2011) 
and 
Anagnostopoulos 
et al. (2010). 



Can climate models simulate past precipitation? 

Does the graph 
indicate: 

 Model 
biases? 

 Model 
errors? 

 Model 
weaknesses? 

 Logico-
philosophical 
problems of 
the approach 
followed? 
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Source: Climate Data Information 
http://www.climatedata.info/Precipitation/Precipitation/global.html 



Climate prognostology: how useful is it in 
studying change in hydrology  

Very useful: It provides an example that we have just to avoid 
and it prompts us to search for a different path: 

 Avoid a simplistic view that complex systems can be 
predictable on the long run in deterministic terms. 

 Avoid being driven by political agendas and economic 
interests. 

 Avoid mixing up science with activism. 

 Avoid fooling the society by providing unreliable predictions. 

 Avoid promoting biased catastrophic scenarios. 

 Avoid making hydrology “climate impactology”. 

 Exploit the rich experience of hydrology in studying and 
managing uncertainty. 

 Improve decision making under unpredictability. 
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Arithmetic simply useless? Or dangerous? 

Excerpts from the book: 

 A reviewer of a paper I wrote condemning beach 
models penned the following criticism, which is 
very typical of the responses that model critics 
receive: “Everyone, even the engineers, realizes that 
models have shortcomings, some serious ones, but 
that is all that they have at this time. They are 
constantly working on improving them. Instead of 
continuing to tear down the existing ones, the 
discipline would be much better served by offering 
better alternatives”. 

 My response (had I been given a chance to 
respond) would have been this: One should not use 
bad models for any reason. If you know that there 
are problems, shame on you and your fellow 
modelers for not saying so when you apply the 
model and give the results to the public. Because 
of the complexity of beaches, rest assured that 
nothing better is coming along. They can never 
be quantitatively modeled with sufficient accuracy 
for engineering purposes. 

(Pilkey and Pilkey-Jarvis, 2007, p. 136)  
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A toy model to demonstrate (un)predictability 

D. Koutsoyiannis, Hydrology, society, change and uncertainty 15 



D. Koutsoyiannis, Hydrology, society, change and uncertainty 16 

Emergence of randomness from determinism from a 
caricature hydrological system 

 The toy model is designed intentionally simple. 

 Only infiltration, transpiration and soil water storage are considered. 

 The rates of infiltration φ and potential transpiration τp are constant.  

 Discrete time: i (t = iΔ where Δ is 
an arbitrary time unit, Δ = 1 TU). 

 Constants 
 Input: φ = 250 mm/TU; 
 Potential output:  
τp = 1000 mm/TU. 

 State variables (a 2D dynamical 
system): 
 Vegetation cover, vi  

(0 ≤ vi ≤ 1) ; 
 Soil water (no distinction 

from groundwater): xi  
(– ∞ ≤ xi ≤ α = 750 mm).  

 Actual output: τi = vi τp Δ 
 Water balance 
 xi = min(xi – 1 + Δ(φ – vi – 1τp), α) 

Nothing in the model is set to be random. 

φ : 
Infiltration 

τ : 
Transpiration 

Datum 

x : 
Soil water 

v : 
Vegetation 

cover 
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Interesting trajectories produced by simple 
deterministic dynamics 
 These trajectories of x and v, for time i = 1 to 100 were produced assuming initial 

conditions x0 = 100 mm (≠ 0) and v0 = 0.30 (≠ 0.25) using a spreadsheet (it can be 
downloaded from itia. ntua.gr/923/). 
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Soil water, x Equilibrium: x = 0
Vegetation cover, v Equilibrium: v = 0

 The system state 
does not converge 
to an equilibrium. 

 The trajectories 
seem periodic. 

 Iterative application 
of the simple 
dynamics allows 
“prediction” for 
arbitrarily long time 
horizons (e.g.,  
x100 = –244.55 mm; 
v100 = 0.7423). 
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Bold blue line 
corresponds to  
initial conditions  
x0 = 100 mm,  
v0 = 0.30. 

All other lines 
represent initial 
conditions slightly  
(< 1%) different. 

Short time horizons: good predictions. 

Long time horizons: extremely inaccurate 
and useless predictions. 
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Does deterministic dynamics allow a reliable 
prediction at an arbitrarily long time horizon? 
 Postulate: A continuous (real) variable that varies in time cannot be ever 

known with full precision (infinite decimal points). 

 It is reasonable then to assume that there is some small uncertainty in the 
initial conditions (initial values of state variables). 

 Sensitivity analysis allows to see that a tiny uncertainty in initial conditions 
may get amplified. 
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From deterministic to stochastic predictions 

 In a deterministic description, xi := (xi , vi) is the vector of the 
system state and S is the vector function representing the 
known deterministic dynamics of the system.  

 Because of the inefficiency of the deterministic description, 
we turn into a stochastic description and consider xi as a 
random variable with a probability density function fi(x). 

 The stochastic representation behaves like a deterministic 
solution, but refers to the evolution in time of admissible 
sets and probability density functions, rather than to 
trajectories of points: 

From xi = S (xi – 1) to 𝑓𝑖 𝒙 =
𝜕2

𝜕𝑥𝜕𝑣
 𝑓𝑖−1 𝒖 d𝒖
 

𝑠−1 𝐴
 

where A := {x ≤ (x, v)} and S–1(A) is the counterimage of A.  
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Stochastics for ever... 

The stochastic representation is good for both short and long horizons, and helps 
figure out when the deterministic dynamics should be considered or neglected. 
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A different perspective of long-term predictability and 
the key consequence of antipersistence 
 Arguably, when we are interested about a prediction for a long time horizon, we 

do not demand to know the exact value at a specified time but an average 
behaviour around that time (the “climate” rather that the “weather”).  
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The behaviour quickly flattening the time average is known as antipersistence 
(often confused with periodicity/oscillation, which is an error). 

Antipersistence enhances climatic-type predictability (prediction of average). 

 The plot of the soil 
water for a long 
period (1000  
TU) indicates:  

 High variability  
at a short (annual) 
scale. 

 A flat time average 
at a 30year scale 
(“climate”). 

 Peculiar variation 
patterns. 
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Quantification of variability 
 To study the peculiar variability of the soil water xi, we introduce the random 

variable ei := ((xi – xi – 1)/Δ)2, where Δ = 1 TU; ei is an analogue of the “kinetic 
energy” in the variation of the soil water.  

 Furthermore we introduce a macroscopic variable θ, an analogue of 
“temperature”, which is the average of 10 consecutive ei; high or low θ indicates 
high or low rates of variation of soil water. 

The frequent and long excursions of the local average from the global average 
indicate long-term persistence, or long-term change (not static conditions). 
Persistence/change are often confused with nonstationarity—but this is an error. 

 The plot of the time 
series of θ for a long 
period (10000 TU) 
indicates long and 
persistent excursions 
of the local average 
(“the climate”) from 
the global average  
(of 10000 values). 

 These remarkable 
changes are produced 
by the internal 
dynamics (no forcing). 
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Demonstration that variability and persistence 
entail unpredictability 

Even a fully deterministic system is fully unpredictable at a climatic time scale 
when there is persistence. 

 The plot shows 100 terms of “temperature” time series produced with exact, as 
well as rounded off, initial conditions. 

 The departures in the two cases are striking.  

 

x0 = 99.5034 mm, v0 = 0.3019  x0 = 100 mm, v0 = 0.30  
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Multi-scale stochastics and predictability 
 For an one-step ahead prediction, a purely random process xi is the most 

unpredictable.  

 Dependence and conditioning on observations enhances one-step ahead 
predictability. 

Contrary to the common perception, positive dependence/persistence substantially 
deteriorates predictability over long time scales—but antipersistent improves it. 

 However, in the climatic-type 
predictions, which concern the 
local average rather than the exact 
value, the situation is different. 

 The climacogram shown on the 
right (plot of standard deviation 
vs. time scale of averaging) shows 
that in a persistent process (like 
in e and θ), the uncertainty at long 
time scales is very high. 

 The reduction due to conditioning 
on the past is annihilating because 
of the persistence. 
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From the toy model to real world hydrological 
systems 



Differences of the “blueprint” with 
deterministic modelling 
 Deterministic model  

 𝑄 = 𝑆(𝜣, 𝑿)  

where Q the model output (e.g. river flow), Θ a vector of model parameters and X 
a vector of model inputs. 

 Stochastic version—general formulation 

 𝑓𝑄 𝑄 =   𝑓𝑒 𝑄 − 𝑆 𝜣,𝑿 𝜣,𝑿
𝑿

𝑓𝜣,𝑿 𝜣,𝑿 d𝜣d𝑿
𝜣

  

where 𝑒 ≔ 𝑄 − 𝑆 𝜣,𝑿  (model error) and f denotes probability density. 

 Simplifying assumptions that enable an easy Monte Carlo implementation: 

 Independent parameters and inputs: 𝑓𝜣,𝑿 𝜣,𝑿 = 𝑓𝜣 𝜣 𝑓𝑿 𝑿 . 

 Representativeness of deterministic model prediction for error conditioning: 
𝑓𝑒(𝑒 𝜣, 𝑿 = 𝑓𝑒(𝑒 𝑆(𝜣, 𝑿) . 

 Summary of differences of the stochastic approach with deterministic modelling: 

 Models are approximations of reality and model parameters are not physical 
constants; they are modelled as random variables. 

 Precise predictions are infeasible; only probabilities can be calculated. 

 One model run is not sufficient; many runs in a Monte Carlo framework can 
give the required probabilities. 
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Differences of the “blueprint” with conventional 
stochastic models 

 Conventional stochastic models (e.g. ARMA and even Hurst-
Kolmogorov processes) are linear. 

 Assuming that the background deterministic model 𝑄 = 𝑆(𝜣, 𝑿) is 
nonlinear (and usually is), the resulting stochastic model for fQ(Q) will 
be nonlinear too. 

 This nonlinear setting offers a more detailed description of the 
relevant processes and a more realistic representation of system 
dynamics at short lead times. 

 However, at long lead times linearity is actually recovered:  

 As entropy approaches its maximum (information is getting lost), 
linearity reemerges, as it is a consequence of entropy maximization 
(Koutsoyiannis, 2014b; Efstratiadis et al., 2014). 

 Therefore, for long lead times conventional linear stochastic 
modelling may be preferable as it is simpler and may not be poorer 
than detailed nonlinear stochastic modelling.  

D. Koutsoyiannis, Hydrology, society, change and uncertainty 28 



Can we effectively control unpredictable systems? 
 Definitely yes—there is overwhelming engineering experience about it. 

 An illuminating  
example is offered  
by an intense and 
persistent (lasting  
7 years) drought  
that shocked Athens. 

 The ingredients for  
the success story of the Athens drought management include: 

 Consistent modelling (see more information in Koutsoyiannis, 2011):  

 Stochastic hydrological model reproducing long-term persistence. 

 Advanced decision support tool based on an original and 
parsimonious stochastic methodology termed parameterization-
simulation-optimization. 

 Construction of new engineering works to improve water resource 
availability. 

 Engagement of the society in water saving practices, which resulted in 
decrease of the water consumption by 1/3. 
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Concluding remarks 
 ΠΡ ≠ PUC  (Πάντα ῥεῖ ≠ Prediction Under Change)  

 ΠΡ ≠ PUD  (Πάντα ῥεῖ ≠ Prediction Under Doom)  

 ΠΡ can help the hydrological community and the society in the 
following important tasks: 

 reconciliation with change; 

 reconciliation with uncertainty; 

 recognition of the tight connection of change and uncertainty; 

 recognition of the inevitability of change and uncertainty; 

 recognition of the good sides of change and uncertainty; 

 advancement of decision making under uncertainty; 

 developing adaptability and resilience for an ever uncertain future; 

 promotion of technology and engineering means for planned 
change to control the environment for the benefit of the society; 

 promotion of the importance of honesty in science and its 
communication to the society; 

 advancement of the Hydrology of Uncertainty. 
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