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Abstract Appropriate spatial scales of hydrological variables were determined 
using an existing methodology based on a balance in uncertainties from model 
inputs and parameters extended with a criterion based on a maximum model 
output uncertainty. The original methodology uses different relationships 
between scales and variable statistics. It is extended with two different 
uncertainty propagation methods, the mean-value first-order second-moment 
(MFOSM) method and Monte Carlo analysis, and backward uncertainty 
propagation to obtain appropriate scales based on two uncertainty criteria. The 
methodology is applied to three flood estimation methods. The application to 
the River Meuse basin in western Europe revealed that the methodology can 
be used for the considered flood estimation methods under similar 
climatological and geographical conditions. The results showed different 
relative input and parameter uncertainties for the different flood estimation 
methods (3–6%) for a specific maximum output uncertainty (25%) and 
different appropriate spatial scales for the dominant variables. 
Key words appropriate scale; backward uncertainty propagation; flood estimation;  
HBV model; MFOSM method; Monte Carlo analysis; SCS method; unit hydrograph 

 
 
INTRODUCTION 
 
A broad palette of models is available for river flood estimation, ranging from simple, 
lumped empirical models to complex, distributed models which include lots of physics 
and mathematics. The complexity of models depends on the processes incorporated, 
the process formulations used, and the different space and time scales applied. In 
general, models should be sufficiently detailed to capture the dominant processes and 
natural variability, but not unnecessarily refined such that computation time is wasted, 
or that the model requirements exceed available data. The optimum model complexity 
depends on the objectives and area of study and results in a so-called appropriate 
model. Booij (2002a) has developed a model appropriateness procedure in which 
dominant processes, appropriate scales, and associated appropriate process 
formulations are determined. Booij (2003) applied this procedure to determine the 
appropriate spatial scales of four dominant variables (elevation, soil type, land use, and 
precipitation) and integrate them into an appropriate model scale. An appropriate scale 
of a variable is intuitively defined as a scale which is sufficiently detailed to capture 
the variability of that variable, but not more than that. This definition was partly 
embedded in the criterion used for appropriate scales requiring a balance in 
uncertainties from inputs and parameters. 
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 Results from Booij (2003) revealed appropriate spatial scales for elevation, soil, 
and land use of 0.1, 5.3, and 3.3 km, respectively, for modelling climate change 
impacts on flooding in the River Meuse in western Europe. The appropriate spatial 
scale for daily precipitation of about 20 km had been assessed in an earlier study 
(Booij, 2002b). This resulted in an appropriate spatial model scale of about 10 km. 
Several other studies show that the “appropriate” scales for elevation (e.g. Wolock & 
McCabe, 2000), soil moisture (e.g. Western et al., 1998), and land use type (e.g. 
Moody & Woodcock, 1995) vary considerably, depending on geographical and 
climatological conditions, extent of the area, and support scale of the data, and can 
hardly be mutually compared. Furthermore, most studies assessed the appropriate scale 
of individual variables and did not integrate them into an appropriate model scale. This 
study extends and improves the methodology of Booij (2003) for the determination of 
appropriate spatial scales by including a criterion for the output uncertainty as well. 
Ideally, a model user would like to prescribe a specific maximum value for the output 
uncertainty to ensure that the model results for situations other than the current 
situation (past, future) are still reliable. 
 The objective of this paper is, therefore, to determine the appropriate spatial scales 
of the dominant variables based on a balance in uncertainties from inputs and 
parameters and a maximum output uncertainty. Dominant refers to the relative 
importance of variables with respect to river flooding in the River Meuse basin in 
France, Belgium, and The Netherlands. The objective is achieved by introducing an 
extended methodology for the determination of appropriate scales incorporating 
uncertainty criteria. This methodology is applied to three flood estimation methods 
using different uncertainty propagation methods, backward uncertainty propagation 
and different relationships between scales and variable statistics are used, and, finally, 
conclusions are drawn. 
 
 
METHODOLOGY 
 
Appropriate scales based on balanced input and output uncertainties 
 
The hydrological model output Y (random) is a function of an n-dimensional 
independent random vector X = (x1, x2,….,xn), Y = f(X), see left-hand side of Fig. 1. 
The functional form of this relationship depends on the problem, study area, and level 
of accuracy required, but in general conceptualizes the input–output relation of a 
hydrological system with different parameters. Examples range from simple 
conceptualizations such as the SCS curve number and dimensionless unit hydrograph 
methods (Maidment, 1992) to more complex ones embedded in hydrological models 
such as HBV (Bergström, 1995) and SHE (Abbot et al., 1986). Often, the calculated 
output is subject to large uncertainties arising from natural uncertainty, data 
uncertainty, model parameter uncertainty, and model structure uncertainty. In the 
original approach for the determination of appropriate spatial scales of Booij (2003), 
only a criterion based on a balance in these uncertainty sources originating from 
dominant variables U(X) has been used. These sources U(X) were used to estimate the 
appropriate spatial scales for different dominant variables λ(X) at a specific temporal 
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Fig. 1 Functional relationships between input X and output Y, related uncertainties 
U(X) and U(Y) and appropriate spatial scales of input λ(X) and appropriate temporal 
scale of output τ(Y). 

 
 
scale, see upper-right side of Fig. 1. This approach could result in arbitrarily large 
uncertainties in the model output U(Y). Moreover, the temporal scale was somewhat 
arbitrarily chosen. 
 The first limitation is addressed in an extended approach for the determination of 
appropriate scales, which is illustrated in Fig. 1. The main improvement is the addition 
of a criterion prescribing a specific maximum value for the output uncertainty. This 
uncertainty U(Y) is backward propagated to the uncertainty sources originating from 
dominant variables U(X) and then, appropriate spatial scales are determined. 
Backward uncertainty propagation and its assumptions and the determination of 
appropriate scales using scale reduction functions are considered at the end of this 
section. First, three flood estimation methods are described and two methods for 
(forward) uncertainty propagation are considered. 
 The second limitation is not addressed here and an arbitrary, but reasonable, 
temporal scale of one day was chosen. Based on a prescribed maximum value for the 
output uncertainty U(Y), the appropriate temporal scale for the output τ(Y) can be 
assessed in a similar way to the appropriate spatial scale for the dominant input 
variables and parameters λ(X). The τ(Y) found can also reasonably be used as the 
appropriate temporal scale for the inputs and parameters (as far as necessary). An 
illustration of this approach applied to the Red River in Vietnam and China can be 
found in Booij & Tran (2005). 
 
 
Hydrological flood estimation methods 
 
The (extended) methodology for the determination of appropriate scales incorporating 
uncertainty criteria is applied to three flood estimation methods: the SCS curve number 
method combined with: (a) the SCS dimensionless unit hydrograph (Maidment, 1992, p. 
9.21–9.26); and (b) a dimensionless unit hydrograph derived in the UK (UH method; 
Shaw, 1994, p. 433–435) and a modified version of the hydrological model HBV 
(Bergström, 1995). For HBV, regionalisation relations from Booij (2005) linking the 
HBV key parameters with river basin characteristics (e.g. slope and surface area) in a 
linear way are applied. This enables comparison of output uncertainties from different 
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flood estimation methods resulting from similar uncertainty sources. This way, the 
general applicability of the methodology described in the previous section can be tested. 
 
 
MFOSM and Monte Carlo uncertainty propagation 
 
The essence of uncertainty propagation analysis is to explore the statistical properties 
of the model output Y based on the statistical properties of input and parameters X. 
Generally, the complete probability density function of Y cannot be derived a priori 
from the probability density functions of X (if these are known); however, often first 
and second moments of Y can be obtained from statistical properties of X. Two 
uncertainty propagation methods are used: the mean-value first-order second-moment 
(MFOSM) method and Monte Carlo analysis. 
 

 MFOSM method The MFOSM method is derived from Taylor’s linear 
approximation of Y around the mean of X, μ(X), in which the nonlinear components 
are truncated: 
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 The main advantages of MFOSM are its simplicity, the partitioning of the model 
output uncertainty σ2(Y) into its various contributions, and the two moments of Y 
expressed as functions of the moments of X. Disadvantages are the assumptions of 
linearity in the region around μ(X) and the independence of the different components 
xi. Melching (1995) summarized the results of many applications of MFOSM to 
hydrological modelling. 
 

 Monte Carlo analysis Monte Carlo analysis involves the random sampling of 
components xi from the input vector X and the determination of the model output Y. 
Advantages of Monte Carlo analysis are its general applicability for estimation of 
response statistics of any nonlinear and/or discontinuous model, and the possibility to 
obtain probability distributions of Y given the probability distributions of X. Disadvan-
tages of Monte-Carlo analysis are the computational demand and the inability to 
directly show the uncertainty contributions of each component. Examples of hydro-
logical applications can be found in Harlin & Kung (1992) and Uhlenbrook et al. (1999). 
 
 
Backward uncertainty propagation and appropriate scale assessment 
 
 Backward uncertainty propagation The two uncertainty analysis methods 
described above consider forward uncertainty propagation. However, backward 
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uncertainty propagation is rarely performed. One of the exceptions is Abusam et al. 
(2003), who illustrated a procedure for backward uncertainty propagation applied to a 
water quality example. They started from the statistical distribution function of the 
output (obtained through Monte Carlo analysis), and moved backward towards finding 
the set of parameter vectors that had resulted in a class or classes of interest (e.g. 
extreme values) in the given distribution function. Here, the MFOSM method will be 
used for backward uncertainty propagation. Once it has been shown that this method 
can be used to determine the output uncertainty, it will be used to propagate backward 
the output uncertainty U(Y) to the uncertainty sources originating from dominant 
variables U(X). Assuming a specific maximum value for the output uncertainty σmax 
(Y) and a balance in uncertainties from inputs and parameters through the requirement 
of the same relative U(xi) = σ(xi)/xi, the required relative input uncertainty can be 
derived from equation (4): 
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 The assumptions of linearity and independence of inputs and parameters in the 
MFOSM method should be checked, although comparison of the forward uncertainty 
propagation results of the MFOSM method with the Monte Carlo results should give 
sufficient confidence in applying the backward propagation approach using MFOSM. 
 

 Appropriate scale assessment The determination of appropriate spatial scales has 
been extensively described by Booij (2002b, 2003). Here, only a brief summary of the 
approach is given, emphasizing the coupling with the required relative input 
uncertainty from equation (4). The appropriate spatial scale for a variable depends on 
its correlation structure and the application area studied. This can be expressed through 
relations between relevant statistics (i.e. variance, extreme values) at the point scale 
(subscript “p”) and those at the really averaged scale (subscript “A”), e.g. for the 
variance: 

( ) ( ) 222 κσσ pA =  (5) 

where κ2 is the variance reduction function decreasing with increasing area A. Its 
magnitude depends on the spatial correlation structure of the variable, and the size and 
shape of the area. Similar relations are available for other statistics such as extreme 
value statistics. 
 The appropriate spatial scale can be determined by means of relations such as 
equation (5), given a specific appropriateness criterion. This criterion is based on the 
bias allowed in estimating the statistics of areally averaged variables from the statistics 
of point variables. This bias is assumed to be equal to the required relative input 
uncertainty from equation (4), enabling a direct coupling between the output 
uncertainty (and temporal scale) and the appropriate spatial scales of input variables 
and parameters. For example, for the variance this gives: 
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 Thus, once the maximum output uncertainty is known, the required relative input 
uncertainty equal to the bias can be determined, and, finally, the appropriate spatial 
scales can be assessed. 
 
 
MFOSM AND MONTE CARLO UNCERTAINTY PROPAGATION RESULTS 
 
Different hydrological flood estimation methods 
 
The effect of forward propagation of uncertainties in inputs and parameters towards 
the output using Monte Carlo analysis on the three flood estimation methods has been 
investigated using 10 000 simulations for each method with normally distributed 
uncertainty in inputs and parameters, assuming a standard deviation of 5% of the 
mean. Thus, U(xi) = σ(xi)/xi from equations (4) and (6) is equal to 0.05. This 
assumption is made for the purpose of illustration of the methods proposed. Actual 
uncertainty analyses of hydrological models have applied much higher relative 
standard deviations of inputs and parameters. All inputs and parameters are assumed to 
be independent. The means of the peak discharges for the SCS method, UH method 
and HBV model are, respectively, 2530, 2500 and 2420 m3/s and their corresponding 
standard deviations are, respectively, 980, 930, and 560 m3/s. Thus, the relative output 
uncertainty σ(Y)/Y is 39, 37 and 23%, respectively. 
 Differences between the SCS and UH methods are small, probably due to the 
similar equations used to derive peak discharges. Therefore, in the remainder of this 
paper only the SCS method is analysed and is assumed to represent the behaviour of 
the UH method as well. Differences between the SCS method and the HBV model are 
considerable, despite the fact that similar parameters are used (partly through 
regression relations). The main causes of these differences may be the land use related 
parameters and obviously the way peak discharges are derived using the parameters. 
 
 
Different uncertainty propagation methods 
 
Figure 2 shows the uncertainty in the peak discharge for the SCS method and HBV 
model, using the MFOSM method and the Monte Carlo (MC) approach for uncertainty 
propagation, resulting from 5% uncertainty in inputs and parameters. Results from 
MFOSM and MC for each flood estimation method are quite similar, suggesting that 
the more cumbersome MC approach could be replaced by the more straightforward 
MFOSM method. This would enable application of the backward uncertainty 
propagation method. 
 This is further investigated in Fig. 3, where the relative output uncertainty as a 
function of the relative input uncertainty for the SCS method and HBV model using 
MFOSM and MC uncertainty propagation is shown. The results from Fig. 2 are 
confirmed, i.e. the differences between MFOSM and MC for both the SCS method and 
HBV model are negligible, in particular when compared with the differences between 
the two flood estimation methods. It thus can be concluded that MFOSM can be used 
for the SCS method and HBV model under similar climatological and geographical 
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conditions, and assuming independency of all inputs and parameters. When certain 
inputs and/or parameters show significant correlation, this may be included in the 
MFOSM method through the use of correlation coefficients between these inputs and 
parameters. 
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Fig. 3 Relative output uncertainty [σ(Y)/Y] as a function of relative input uncertainty 
[σ(xi)/xi] for the SCS method and HBV model using MFOSM and MC (Monte Carlo) 
uncertainty propagation methods. 

 
 
BACKWARD UNCERTAINTY PROPAGATION AND APPROPRIATE 
SCALE RESULTS 
 
Backward uncertainty propagation 
 
The application of the backward uncertainty propagation method has been justified in 
the previous sub-section. This feature of the SCS method and HBV model can be used 
to estimate the required relative input uncertainty assuming a specific maximum value 
for the relative output uncertainty. This is illustrated in Fig. 4 for the SCS method and 
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HBV model with a relative output uncertainty of 25%. This results in a relative input 
uncertainty of about 3% for the SCS method, and of about 5.5% for the HBV model. 
Such input and parameter uncertainty targets are probably not achievable in practical, 
real world modelling. For example in Melching et al. (1991), the relative parameter 
uncertainties in an uncertainty analysis applied to two hydrological models varied from 
15 to 110%. Thus, if models such as the SCS method and HBV model are to be used, a 
higher uncertainty must be accepted. Otherwise, one should evaluate more complex 
models that “might” yield higher accuracy, and evaluate these models using the 
methodology proposed in this paper. 
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Fig. 4 Illustration of determination of the required relative input uncertainty for a 
variable [ ( ) xxσ ] accepting a specific maximum value for the relative output 
uncertainty [σmax (Y)/Y] of 25% for the SCS method and HBV model. 

 
 
 Because of the linear, monotonic relation between the input and output 
uncertainty, relations based on the Monte Carlo approach such as in Fig. 3 could 
eventually also be used to determine the required relative input uncertainty. However, 
this latter approach is less efficient and straightforward than the backward approach 
illustrated here, because of the cumbersomeness of the Monte Carlo approach itself, 
and the necessity to evaluate the output uncertainty for a number of input uncertainties. 
 
 
Appropriate scales 
 
Analogously to Booij (2003) the required input uncertainties can be translated to 
appropriate spatial scales (Δx) expressed as a fraction of the spatial correlation length 
(L). This is shown in Fig. 5, where the determination of the appropriate spatial scale 
for a variable (Δx/L) for a specific relative input uncertainty [ ( ) xxσ ] for the HBV 
model is illustrated. The appropriate scale for a relative input uncertainty of 5.5% is 
about 13% of the spatial correlation length, when the variance of the variable is of 
interest. This could be somewhat more when extreme values are of interest. This 
results in smaller appropriate scales for dominant variables, such as precipitation, 
elevation, soil, and land use, than those determined in Booij (2002b) and Booij (2003), 
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assuming a relative input uncertainty of 10% (resulting in appropriate scales as a 
fraction of the correlation length of 20% for the variance and 25% for extreme values). 
When requiring a relative output uncertainty of 25% and a balance in uncertainties 
from inputs and parameters, the appropriate scales for precipitation, elevation, soil, and 
land use become about 13 km, 65 m, 3.4 km, and 2.1 km, respectively. Using the 
methodology from Booij (2003), these dominant variables can be integrated into a 
(smaller) appropriate model scale. This is not shown here, but obviously the final 
result depends on the required output uncertainty of 25% (compared with the required 
input uncertainty of 10% in the earlier study). 
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Fig. 5 Illustration of determination of appropriate spatial scale for a variable (Δx/L) for 
a specific relative input uncertainty [ ( ) xxσ ] (see Fig. 4) for the HBV model. 

 
 
CONCLUSIONS 
 
A methodology is introduced to determine the appropriate spatial scales of dominant 
variables in the context of river flooding based on a balance in uncertainties from 
inputs and parameters and a maximum output uncertainty. It has been applied to three 
flood estimation methods and checked using two uncertainty propagation methods. 
The application revealed that the methodology can be used for the flood estimation 
methods considered under similar climatological and geographical conditions and 
assuming independence of all inputs and parameters. The results showed for a specific 
maximum output uncertainty different relative input and parameter uncertainties for 
the different flood estimation methods resulting in different appropriate spatial scales 
of dominant variables. 
 The assumed balance in uncertainties (equal coefficients of variation) among the 
uncertain model inputs and parameters is unlikely to be achieved in actual modelling 
cases. Further, the contribution of the various uncertain inputs and parameters to the 
model output uncertainty is also uneven (i.e. not balanced). Thus, future research 
should be directed toward determining different levels of required accuracy/uncertainty 
for different inputs and parameters, on the basis of the sensitivity of the output 
uncertainty to these inputs and parameters. These different levels of required 
accuracy/uncertainty should also be compared to the ability to reduce the uncertainty 
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of the various inputs and parameters by increasing the data available for their 
determination, decreasing the spatial scale of their evaluation, and/or other means. In 
this way, a methodology for the determination of appropriate spatial scales based on a 
balance in contributions of inputs and parameters to the output uncertainty, and a 
maximum output uncertainty could be obtained. Furthermore, the feasibility of 
uncertainty contributions of inputs and parameters might also be included. 
 The assumptions underlying the backward uncertainty propagation used in the 
methodology are (semi-)linearity of the model behaviour and independence of all 
inputs and parameters. It has been shown that (semi-)linearity can be assumed for the 
flood estimation methods considered and the mean-value first-order second-moment 
(MFOSM) method can be used for backward uncertainty propagation. When certain 
inputs and/or parameters show significant correlation (dependency), this may be 
included in the MFOSM method through the use of correlation coefficients between 
inputs and parameters. 
 Depending on which flood estimation method is used, different combinations of 
appropriate spatial scales of dominant variables are found. Using flood estimation 
methods other than those described here, would probably result in yet more different 
combinations of scales. However, once a certain flood estimation method is chosen for 
a roughly similar climatological regime and geographical area, the methodology can be 
applied to determine, depending on the user’s preferences with respect to output 
uncertainty, appropriate spatial scales based on a balance in input and parameter 
uncertainties. The case study presented here was primarily used to illustrate the 
usefulness of the methodology. 
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