Tracking the origin and dispersion of contaminated sediments transported by rivers draining the Fukushima radioactive contaminant plume

HUGO LEPAGE1, OLIVIER EVRARD1, YUICHI ONDA2, CAROLINE CHARTIN1, IRENE LEFEVRE1, AYRAULT SOPHIE1 & PHILIPPE BONTE1

1Laboratoire des Sciences du Climat et de l’Environnement (CEA, CNRS, UVSQ), F-91198 Gif-sur-Yvette France
hugo.lepage@lsce.ipsl.fr
2Center for Research in Isotopes and Environmental Dynamics (CRIED), Tsukuba University, Tsukuba, Japan

Abstract This study was conducted in several catchments draining the main Fukushima Dai-ichi Power Plant contaminant plume in Fukushima prefecture, Japan. We collected soils and sediment drape deposits (n = 128) and investigated the variation in ^{137}Cs enrichment during five sampling campaigns, conducted every six months, which typically occurred after intense erosive events such as typhoons and snowmelt. We show that upstream contaminated soils are eroded during summer typhoons (June–October) before being exported during the spring snowmelt (March–April). However, this seasonal cycle of sediment dispersion is further complicated by the occurrence of dam releases that may discharge large amounts of contaminants to the coastal plains during the coming years.

Key words erosion; sediment; soil; Fukushima; radio-caesium; enrichment factor