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Abstract Hourly precipitation data sets are generated with a stochastic rainfall model and using a statistic 
disaggregation approach. The synthetic rainfall data are used as input for a continuous hydrological model 
applied to a mesoscale catchment in the Bode River basin in Germany. The simulated flows are analysed 
regarding the derived probability distributions of annual peak flows. The results show significant differences 
in flood probabilities for using spatially random rainfall, homogeneous rainfall or spatially structured 
rainfall. The direct calibration of the hydrological model using stochastic rainfall on flood probability 
distributions generally reduces both the bias and the variability in the simulated flows compared to the 
standard procedure using observed rainfall and runoff time series for calibration. 
Key words  derived flood frequency analysis; continuous hydrologic modelling; stochastic rainfall;  
rainfall disaggregation; model calibration; uncertainty 
 
 
INTRODUCTION 

Reliable flood risk assessment and the development of effective flood protection measures require 
a good knowledge of flood frequencies at different points in a catchment. The classical approach 
to obtain design flows is to carry out local or regional flood frequency analysis using long records 
of observed discharge data (e.g. Hosking & Wallis, 1997). If flow data are not available or if 
impacts of climate or land-use change are to be investigated, rainfall–runoff modelling is a good 
alternative, using either event-based or continuous simulation. 
 A disadvantage of the event-based simulation is the required assumption about equal return 
periods for the design storm and the resulting design flood. This is usually not given, considering 
e.g. the initial soil moisture conditions in the catchment, which may lead to different floods for the 
same storm. With continuous rainfall–runoff simulation this problem can be avoided and the 
design flood is derived by flood frequency analysis of long series of simulated flows. However, 
such kinds of hydrological modelling require long continuous rainfall series with high temporal 
and sufficient spatial resolution. Given the restricted availability of those observed data, synthetic 
precipitation is often used for this purpose (Cameron et al., 1999; Blazkova & Beven, 2004; 
Aronica & Candela, 2007; Haberlandt et al., 2008; Moretti & Montanari, 2008).  
 Still, one challenge with this approach is to provide space–time consistent rainfall fields for 
distributed hydrological modelling. Another problem is the optimal calibration of the hydrological 
models considering flood frequencies as simulation target and the dependence of the parameteriz-
ation on the input data (e.g. Bárdossy & Das, 2008). In this paper, these two special problems will be 
addressed. First, the uncertainty related to using spatially random synthetic rainfall versus spatially 
consistent synthetic rainfall for hydrological modelling is assessed. Second, different calibration 
strategies are compared, based on either observed precipitation or synthetic rainfall and using either 
observed hydrographs or observed probability distributions of peak flows as target variables.  
 
 
METHODOLOGY 

Stochastic rainfall model 

A hybrid stochastic precipitation model is applied to provide continuous hourly space–time rainfall 
series consisting of two components (Haberlandt et al., 2008). The first component is a classical 
alternating renewal model used to simulate independent precipitation event time series for several 
locations (Fig. 1).  
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Fig. 1 Scheme of the precipitation event process. 
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Fig. 2 Scheme of a multiplicative random cascade model. 
 
 
 Wet and dry spell durations are modelled by general extreme value and Weibull distributions, 
respectively. Wet spell intensity is modelled using a Weibull distribution. The dependence 
between wet spell intensity and duration is described by a 2-D copula (De Michele & Salvadori, 
2003). For disaggregation of the wet spells into hourly intensities a special profile with random 
peak time is used. The second component uses simulated annealing for resampling the univariate 
event time series (Bárdossy, 1998) to reproduce the spatial dependence structure. The objective 
function includes three bivariate criteria: (a) the probability of rainfall occurrence, (b) Pearson’s 
correlation coefficient, and (c) the expected rainfall amount conditioned on rainfall occurrence at a 
neighbouring station. The parameters of the rainfall model are estimated for summer (May–
October) and winter (November–April) seasons separately. 
 
Rainfall disaggregation model 

Usually the availability of daily precipitation data is much better than for hourly data. Thus one 
interesting alternative is the disaggregation of daily rainfall into smaller time steps. For 
disaggregation a multiplicative random cascade model with exact mass conservation is applied 
here (Güntner et al., 2001) (Fig. 2).  
 The model divides the observed 24 h precipitation subsequently into two equal size non-
overlapping boxes, having one of the three possible states with certain transition probabilities P: 
wet/wet with P(x/1–x), wet/dry with P(1/0) or dry/wet with P(0/1). Here, the divisions are carried 
out from level zero (24 h) up to level five (45 min). Hourly rainfall is finally estimated by dividing 
the 45 min rainfall boxes into three uniform 15-min blocks and re-aggregating four blocks each 
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from the time series back to 60 minutes. The parameters for the model are each estimated from the 
nearest hourly neighbour station. The main problem here is the conservation of the space–time 
structure of precipitation.   
 
Hydrological modelling 

For runoff simulations the conceptual hydrological model HEC-HMS (Scharffenberg & Fleming, 
2005) is used. The model is operated continuously on an hourly time step. It uses the soil moisture 
accounting (SMA) algorithm for runoff generation, the Clark Unit Hydrograph for the 
transformation of direct runoff, two linear reservoirs to consider interflow and baseflow 
transformation, and a simple river routing where the flows are only lagged in time. Snowmelt is 
calculated externally using the degree-day method. Potential evapotranspiration is also computed 
externally using the method proposed by Turc-Wendling (Wendling et al., 1991).  
 For model calibration five sensitive parameters of HEC-HMS are selected and estimated in 
lumped mode for the catchment under investigation using the PEST algorithm (Doherty, 2004). 
Employing different calibration strategies three versions of “optimal” parameter sets are 
determined using the different input and output data. Table 1 indicates how the three parameter 
sets have been estimated. To obtain parameter set I, observed continuous time series of rainfall and 
runoff are used for classical calibration, minimizing the sum of squared deviations between 
observed and simulated runoff. Half of the observation period is used for calibration and half for 
validation. For parameter set II, several realisations of disaggregated rainfall from daily 
observations are used to simulate continuous runoff time series. Flood frequency analysis is 
applied on annual maximum series derived from the simulated flows. For the observed series and 
for each simulated realisation the general extreme value distribution (GEV) is fitted. The sum of 
squared weighted deviations between a set of “observed” quantiles and the median of “simulated” 
quantiles from all realisations is used here as objective function for calibration. The same 
procedure is also applied using stochastic rainfall to obtain parameter set III. For both parameter 
sets II and III only half of the generated realisations are used for calibration, but all realisations are 
used later for validation and application. 
 
 
Table 1 Parameter sets for HEC-HMS calibrated using different input and output data.  
Parameter set Input data (rainfall) Output data (runoff) Calibration period 
I – OBS Observed rainfall 

13 years 
Observed discharge 
7 years 

4 years  

II – DISAG Disaggregated rainfall 
from daily observed data  
20 realisations × 36 years 

Probability distribution 
of annual peak flows 
36 years 

36 years observed peak 
flow using 10 
realisations rainfall 

III – STOCH Stochastic rainfall 
20 realisations × 100 years 

Probability distribution 
of annual peak flows 
56 years 

56 years observed peak 
flow using 10 
realisations rainfall 

 
 
STUDY REGION AND DATA 

The investigations are carried out for the mesoscale Selke catchment up to the gauge Silberhütte 
belonging to the Bode River basin in northern Germany (Fig. 3). The Bode region has elevations 
between 1140 m a.s.l. at the top of the Brocken Mountain and about 80 m a.s.l. Mean annual 
rainfall varies between 1700 mm/year and 500 mm/year. Floods are generated either by frontal 
rainfall, frontal rainfall on snowmelt or convective storms.  
 Figure 3 shows also the locations of the precipitation stations and the sub-catchments. The 
lengths of the observation periods for rainfall and streamflow data are indicated in Table 1. 
Because of the sparse network of recording hourly rainfall gauges, daily stations are also included 
for simulations with observed and stochastic rainfall. For the former, daily rainfall totals are  
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Fig. 3 Locations of the Selke catchment with precipitation stations, streamflow gauge and sub-
catchment delineation. 

 
 
disaggregated into hourly data using the intensity profile from the nearest station with high 
resolution data. For the latter, stochastic rainfall is transferred to the daily station locations by 
scaling the time series with the long-term rainfall ratio between the two locations. Finally, areal 
rainfall for sub-catchments is calculated by Thiessen interpolation from all daily and hourly station 
locations. 
 
 
ANALYSIS AND RESULTS 

Relevance of spatially consistent rainfall 

In order to assess the importance of spatially consistent rainfall for flood simulations, several 
precipitation data sets expressing different spatial rainfall consistence are generated. The model 
HEC-HMS is calibrated here using observed rainfall and runoff time series (parameter set I) and is 
then forced with the different precipitation time series. Flood frequency analysis is applied on the 
simulated runoff time series and compared against frequencies of observed peak flows. 
 Concerning rainfall disaggregation, two limiting cases are compared. In the first case, 
independent disaggregated rainfall for all stations involved is provided (“random rainfall”). The 
second consists of fully homogeneously disaggregated rainfall based on one dynamically selected 
pilot station showing the largest daily rainfall amount each (“uniform rainfall”). Figure 4(a) shows 
the results for summer maximum flow series. With randomly disaggregated rainfall the peak flows 
for return periods larger then 10 years are underestimated. The empirical distribution of peak flows 
resulting from uniformly disaggregated rainfall is higher than the distribution from random 
rainfall, as expected. The largest observed values are better reproduced, but smaller values are 
overestimated. The truth may be somewhere in between. So, in the absence of a capable method 
for temporal rainfall disaggregation considering spatial relationships, a pragmatic approach might 
be to use these two limiting cases as boundaries for estimating required design flows.  
 Concerning synthetic precipitation generated with the stochastic rainfall model, the effect of 
the resampling procedure on the simulated flood frequencies was of especial interest. Three 
rainfall scenarios are investigated: spatially random rainfall, spatially structured rainfall applying 
both components of the rainfall model and spatially uniform rainfall. For the random rainfall case 
the resampling procedure was omitted and for the uniform rainfall case only one rainfall station 
was used as homogeneous areal rainfall. In Fig. 4(b) the results for summer maximum flow series 
are shown. With random rainfall, floods are underestimated for return periods greater than 10 
years, structured rainfall overestimated smaller floods and uniform rainfall largely overestimated 
floods. Structured rainfall leads to an increase of flood probabilities as expected. However, it does 
not fit to the observed values very well. One reason might be that the hydrological model is used 



Uwe Haberlandt & Imke Radtke 
 

14 

here with parameter set I, calibrated on the 4 years of continuously observed streamflow (see also 
Fig. 5). The uniform rainfall simulates much too high peak flows. The difference with the 
corresponding case in Fig. 4(a) might result from using the same single station all the time here, 
and from the different type of synthetic rainfall data.  
 
 

 
Fig. 4 Empirical probability distributions of summer peak flows for the Selke catchment derived from 
HEC-HMS simulations based on parameter set I (OBS): (a) using disaggregated rainfall (median of 10 
realisations each 36 years), (b) using stochastic rainfall (median of 10 realisations each 100 years). 

 
 

 
Fig. 5 Fitted GEV distributions for annual peak flows for the Selke catchment derived from HEC-HMS 
simulations comparing parameter sets I, II and III: (a) median and 90% confidence bands using 
disaggregated rainfall based on 20 realisations, (b) median and 90% confidence bands using stochastic 
rainfall based on 20 realisations. 

 
 
Effect of calibration strategy  

Next, the effect of different calibration strategies for HEC-HMS is analysed. Figure 5(a) shows the 
simulation results using disaggregated rainfall data as input. HEC-HMS has been calibrated here 
either based on observed precipitation and runoff time series (parameter set I), or directly based on 
disaggregated rainfall and a fitted probability distribution for peak flows (parameter set II). 
Targeting the observed GEV in calibration, both the bias and the variability of simulated peak 
flows using disaggregated rainfall data are smaller. However, the bandwidth of the simulated 
GEVs representing 90% of the realisations does not completely cover the observed GEV. Note that 
for disaggregated precipitation only 36 years out of the 56 years of observed peak flows could be 
used for calibration because of the restricted rainfall record length (see Table 1). 
 In Fig. 5(b) the results using the stochastic rainfall data as input for HEC-HMS are shown. 
Again, HEC-HMS has been calibrated here either based on observed precipitation and runoff time 
series (parameter set I), or directly based on stochastic rainfall and a fitted probability distribution 
for peak flows (parameter set III). Compared to using disaggregated rainfall to drive the 
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hydrological model (Fig. 5(a)) the variability of simulated floods for both calibration strategies is 
larger here. This might be due to the higher variability of purely stochastic rainfall. However, 
using stochastic rainfall and the peak flow distribution for calibration of HEC-HMS instead of 
observed rainfall and runoff, the bias and variability of simulated floods with reference to the 
observed GEV can largely be reduced. In addition, the 90% confidence band nicely covers the 
observed peak flow distribution. Here, the full 56 year peak flow record could be used for 
calibration because of the unlimited length of stochastic rainfall. 
 
 
SUMMARY AND CONCLUSIONS 

In this paper, two special problems for derived flood frequency analysis have been investigated:  
(a) the uncertainty related to using spatially random synthetic rainfall versus spatially consistent 
synthetic rainfall, and (b) the effect of different calibration strategies for a hydrological model 
using observed or synthetic precipitation as input and observed time series of runoff or probability 
distributions of peak flows as output. The results show that: 
 

(a) with disaggregated or stochastic rainfall a good reproduction of flood frequencies is possible; 
(b) there are significant differences in derived flood probabilities depending on the degree of 

spatial rainfall consistence used to force the hydrological model; 
(c) design flows might be estimated from two limiting cases of disaggregated rainfall data: 

spatially random and spatially uniform distributed precipitation; 
(d) the spatial resampling component of the hybrid stochastic precipitation model increases the 

plausibility of simulated floods; and 
(e) the calibration of hydrological models directly on stochastic rainfall and observed peak flow 

distributions reduces the uncertainty in derived flood frequency analysis. 
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