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Abstract Uncertainties in discharge determination may have serious consequences for hydrological 
modelling and resulting discharge predictions affecting flood and drought risk assessment and decision 
making. The aim of this study is to quantify the effect of discharge errors on parameters and performance of 
a conceptual hydrological model for discharge prediction applied to two catchments. Four error sources in 
discharge determination are considered: a combination of systematic and random measurement errors 
without autocorrelation; random measurement errors with autocorrelation; hysteresis in the discharge-water 
level relation; and effects of an outdated discharge–water level relation. Results show that systematic errors 
and an outdated discharge–water level relation have a considerable influence on model performance, while 
other error sources have a small to negligible effect. The effects of errors on parameters are large if the 
effects on model performance are large, and vice versa. Parameters controlling the water balance are 
influenced by systematic errors, and parameters related to the shape of the hydrograph are influenced by 
random errors. Large effects of discharge errors on model performance and parameters should be taken into 
account when using discharge predictions for risk assessment and decision making. 
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INTRODUCTION 

Hydrological models are usually calibrated using discharge time series observed at one or a few 
locations in the river basin, using time series of observed precipitation and other climatological 
variables as input. Errors in observed time series may result in errors in estimated parameters 
during calibration and hence an increased uncertainty in simulated discharge. This may seriously 
affect flood and drought risk assessment and decision making. The effect of sampling errors, 
spatial resolution, and quality of precipitation input on model parameters and performance has 
been frequently investigated (e.g. Bárdossy & Das, 2008; Booij, 2002; Andréassian et al., 2001, 
respectively). However, the effect of errors in discharge determination on model parameters and 
model performance has been studied less often, a few exceptions being Aronica et al. (2006) and 
McMillan et al. (2010). More insight in these effects can direct future discharge determination 
methods and research, and may improve short- and long-term discharge predictions supporting 
flood and drought risk management. 

The aim of this study is to quantify the effect of discharge errors on the performance and 
parameters of a conceptual hydrological model for discharge prediction. The study area consists of 
two catchments in the Meuse River basin in Belgium, France and Luxembourg. The hydrological 
model HBV to simulate river discharge, the calibration procedure, the errors in discharge time 
series and the implementation of error sources in adapted discharge time series are subsequently 
described. Finally, results are discussed and conclusions drawn. 
 
 
STUDY AREA 

The Meuse River basin is located in France, Belgium, Luxembourg, Germany and the 
Netherlands. In this study the focus is on two catchments in the Meuse basin: the Ourthe 
(1597 km2) in Belgium and the Chiers (2207 km2) in Luxembourg, Belgium and France. The 
average slope of the Ourthe is larger than the slope of the Chiers and this is reflected in a more 
extreme high and low flow behaviour of the Ourthe. Mean annual precipitation is 971 mm for the 
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Ourthe and 918 mm for the Chiers and mean annual discharge is 438 and 380 mm, respectively 
(period 1968–1998, see Booij & Krol, 2010). 

Daily precipitation, temperature, potential evapotranspiration and discharge data for the 
period 1968–1997 are used. Potential evapotranspiration has been calculated using the Penman-
Monteith equation. The precipitation, temperature and potential evapotranspiration series are 
corrected for elevation and prepared for the two catchments using data provided by KMI (Belgian 
Royal Meteorological Institute) and Météo France, similar to Booij (2005). The discharge series 
have been obtained from SETHY/WACONDAH (Belgium) and DIREN Lorraine (France). 
 
 
METHODS 
HBV hydrological model 
For river discharge simulation, the hydrological model HBV of the Swedish Meteorological and 
Hydrological Institute (SMHI) is used (Bergström, 1995). This model is a semi-distributed, 
conceptual hydrological model using sub-catchments as the primary hydrological units. It takes 
into account area-elevation distribution and basic land-use categories (glaciers, forest, open areas 
and lakes). HBV uses readily available data (precipitation, potential evapotranspiration and 
temperature) as inputs and has proven capabilities in simulating large river basins. The large 
number of applications using this model, under various physiographic and climatological 
conditions, has shown that its structure is very robust and general, in spite of its relative simplicity 
(e.g. Lidén & Harlin, 2000; Dong et al., 2005; Akhtar et al., 2009). There are several parameters 
included in the model which have to be estimated through calibration with observed data. The 
model consists of six routines, which are a precipitation accounting routine, a soil moisture 
routine, a quick runoff routine and a base flow routine, which together transform excess water 
from the soil moisture zone to local runoff, a transformation function and a routing routine. 
 The HBV model has been recently applied to the Meuse basin (Booij, 2005; Leander et al., 
2005; Ashagrie et al., 2006; Leander & Buishand, 2007, Van Pelt et al., 2009; Booij & Krol, 2010) 
and specifically to the Ourthe catchment (Berne et al., 2005; Driessen et al., 2010). The HBV 
model schematization of Booij & Krol (2010) is used in this study. In this schematization, the 
Meuse basin is subdivided into 15 catchments, including the Ourthe and Chiers catchments. 
 
Calibration procedure 

Model calibration is carried out using the SCEM-UA algorithm (Vrugt et al., 2003). SCEM-UA is 
an automatic global searching method which is based on the SCE-UA algorithm (Duan et al., 
1992). Instead of using the Downhill Simplex method that is used in the SCE-UA algorithm, an 
evolutionary Markov Chain Monte Carlo (MCMC) sampler is used. This means that a controlled 
random search is used to find the optimum set of parameter values in the parameter space. The 
choice for the SCEM-UA method is based on the fact that it is an automatic global search method 
that converges quite fast to the optimal value. An advantage of this algorithm is that the chance of 
finding the global optimum is very high. First a calibration is performed with eight HBV 
parameters requiring 4000 iterations. Parameter ranges are taken from Booij & Krol (2010). Next, 
a sensitivity analysis is performed to determine the most important five parameters which are used 
in subsequent calibrations. The other parameters get default values.  

Model performance is evaluated using a combined objective function Y (Akhtar et al., 2009): 

RVE
NSY

+
=

1
 (1) 

where NS is the Nash-Sutcliffe coefficient and RVE the relative volume error (a fraction). For an 
acceptable model performance, NS should be close to 1 and RVE should be close to 0 resulting in a 
Y value close to 1. The calibration period is from 1984 to 1998 and the validation period is from 
1968 to 1983. The model is calibrated for the original and each of the adapted discharge series 
using SCEM-UA. 
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Errors in discharge time series 

Uncertainties in discharge time series are present due to errors in discharge determination. Two 
types of errors are distinguished: measurement errors and errors in the relation between discharge 
and water level (Q–h relation) used in discharge determination. Measurement errors can occur in 
the determination of the water level, cross-section and/or velocity. These errors can have several 
causes: uncertainties in measured data, uncertainties regarding the executing of the measurement 
and uncertainties regarding the performance of the measuring equipment. This results in 
systematic errors or random errors (with or without correlation) or a combination of both. Errors in 
the Q–h relation are caused by the properties of high water events (e.g. shape and gradient), 
hysteresis effects and outdated Q–h relations. An outdated Q–h relation can be caused by changes 
in the cross-section of the river resulting in systematic errors. For example, if sedimentation takes 
place at a certain location, the water level will be higher for a certain discharge compared to the 
water level before sedimentation. 
 
Error sources in adapted discharge time series 

In reality, combinations of errors occur in discharge determination. Four error sources in discharge 
determination are considered. Error sources 1 and 2 represent errors in discharge measurements, 
and error sources 3 and 4 represent errors in the Q–h relation. Source 1 is a combination of 
systematic and random measurement errors without autocorrelation, source 2 includes random 
measurement errors with autocorrelation, source 3 comprises errors in the Q–h relation caused by 
the properties of high water events and hysteresis effects and source 4 covers effects of an 
outdated Q–h relation.  
 Adapted discharge time series incorporating these error sources are constructed by stochastically 
disturbing the original observed discharge time series. Random errors (without autocorrelation) are 
incorporated by randomly adjusting the original time series with values drawn from a normal 
distribution with zero mean and a standard deviation of 2.5% and 5% of the original discharge value 
(two scenarios). Systematic errors are implemented by adding a constant relative value to the original 
time series (six scenarios: –25%, –10%, –5%, 5%, 10% and 25%). Random errors with 
autocorrelation are incorporated using the method of De Kok & Booij (2009). Errors in the Q–h 
relation due to the properties of high water events are included by adapting the original time series 
depending on the shape of the high water event. Errors in the Q–h relation due to hysteresis effects 
are generated using different flood wave celerities (five scenarios: 0.7, 1.1, 1.5, 1.9 and 2.3 m/s) 
following Jansen et al. (1979, p. 75). Effects of an outdated Q–h relation are simulated by adding a 
gradually increasing systematic error to the original time series. This systematic error starts to 
increase just after a revision of the Q–h relation and reaches its maximum just before a new revision. 
The systematic errors are assumed to be absolute deviations from the original values (four scenarios: 
maximum systematic errors are 1, 5, 10 and 15 m3/s), because it is assumed that the expiration of the 
Q–h relation is caused by changes in the cross-section. Furthermore, it is assumed that the systematic 
errors are positive and that the Q–h relation is revised every 5 years (see Jansen, 2007). 
 
Quality of adapted discharge time series 

The quality of the adapted discharge time series is assessed using two quality functions. These 
functions can be used to compare the quality of the discharge series with the objective function 
after calibration. The first function considers the quality of the shape of the hydrograph and is 
comparable with the Nash-Sutcliffe coefficient. This function is called Quality Of Discharge 
(QOD) and is shown in equation (2). A perfect match of the original and adapted time series will 
result in a value of 1 for this function: 
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where Qa is the adapted discharge, Qo is the original discharge, i is the time step and N is the total 
number of time steps. The second function looks at the difference in water balance between the 
original and adapted discharge series and is called BALANCE. It has an optimal value of 0. 
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The QOD and BALANCE functions are based on similar quality functions for rainfall time series 
(GORE and BALANCE) introduced by Andréassian et al. (2001).  
 
 
RESULTS AND DISCUSSION 

Model performance and parameters for original discharge time series 

Table 1 presents the model performance for the Ourthe and Chiers using the original discharge 
time series for calibration and validation. The objective function value Y is very good for the 
Outhe in the calibration and still good in the validation. Values for the Chiers are smaller, but 
comparable in the calibration and validation. For the Chiers, a total of 5.5 years (instead of 16 
years) has been used in the validation due to limited data availability. These results are similar to 
the results of Booij & Krol (2010) when comparing similar evaluation periods.  
 
 
Table 1 Model performance for Ourthe and Chiers catchments using original discharge time series for 
calibration and validation. 

Calibration Validation Catchment 
NS RVE (%) Y NS RVE (%) Y 

Ourthe 0.93 0.0 0.93 0.85 0.9 0.84 
Chiers 0.77 0.0 0.77 0.79 4.4 0.75 
 
 
 In the Ourthe catchment, the HBV model parameters FC, ALFA and KF have a strong 
convergence at the beginning of the calibration and therefore are well identifiable, while the 
optimizing algorithm seems to have more difficulties in determining BETA and LP. In the Chiers 
catchment, FC, BETA and LP show a strong convergence and thus are well identifiable, while 
ALFA and KF show a weaker convergence and are less identifiable. 
 
Model performance for adapted discharge time series 

Results show that systematic errors and an outdated Q–h relation have a considerable influence on 
model performance, while random errors with autocorrelation have some influence and the other 
error sources have a negligible effect. As an example, the influence of a combination of systematic 
and random measurement errors without autocorrelation (source 1) represented by the two quality 
functions on the objective function Y is shown in Fig. 1 for the Ourthe. The different symbols 
represent different systematic errors (triangle: 5%, circle: 10%, square: 25%) with a 2.5% standard 
deviation for the random error, where a dot represents a (corresponding) 5% standard deviation for 
the random error. The “*” symbol indicates the objective function in the original situation with 
optimal values of 1 and 0 for QOD and BALANCE, respectively. Figure 1 shows that the influence 
of systematic errors is indeed considerable, and the influence of random errors is small. The 
relation between BALANCE and Y shows that a small positive systematic error results in a slightly 
larger value of Y compared to the original discharge series. Similar results are found for the Chiers. 
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Fig. 1 Relation between quality functions (a) QOD  and (b) BALANCE and objective function Y for Ourthe. 

 
 
Model parameters for adapted discharge time series 

Results show that the effects of errors on parameters are large if the effects on model performance 
are also large, and vice versa. As an example, the influence of error source 1 on the parameters is 
shown in Fig. 2 for the Ourthe. The different symbols represent different systematic errors (triangle: 
5%, circle: 10%, square: 25%), where an open symbol indicates a negative systematic error and a 
filled symbol indicates a positive one. Because of the small influence of random errors, these 
symbols are used for both standard deviations of 2.5% and 5%. The “*” indicates the objective 
function and parameter value in the original situation. Parameters controlling the water balance are 
influenced by systematic errors and parameters related to the shape of the hydrograph are influenced 
by random errors. The water balance parameters show a certain pattern in both catchments. The 
values of FC and BETA increase if the systematic error is negative, while the values decrease with a 
positive systematic error. A similar but opposite behaviour is found for LP. The observed patterns 
can be explained by the physical meaning of the parameters. For instance FC, representing the 
capacity of the soil moisture reservoir, decreases with a positive systematic error, because the model 
has to generate more runoff than in the original situation during the entire calibration period.  
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Fig. 2 Relation between objective function Y and HBV model parameters for the Ourthe. 

 
 
CONCLUSIONS 

The aim of this study was to quantify the effect of discharge errors on the performance and 
parameters of a conceptual hydrological model. Systematic errors and an outdated discharge–water 
level relation have a considerable influence on model performance, while random errors with 

(a) (b)
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autocorrelation have some influence and the other error sources have a negligible effect. The 
effects of errors on parameters are large if the effects on model performance are also large and vice 
versa. Parameters controlling the water balance are influenced by systematic errors and parameters 
related to the shape of the hydrograph are influenced by random errors. The effects of errors do not 
vary much between the catchments. Large effects of discharge errors on model performance and 
parameters should be taken into account when using discharge predictions for risk assessment and 
decision making. 
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