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Abstract Hydrological models are widely used in water resources management in Australia. Unpinning 
these models is streamflow data, which is commonly used as inputs, for calibration of parameters and, for 
verification of model performance. One of the lesser investigated issues in modelling and uncertainty 
analysis is how the choice of error models impacts on simulations, and how this propagates into decision-
making where simulations are used to determine the volume, frequency and reliability of flows. We used an 
analysis of the deviations in gaugings from flow gauges in the Namoi River catchment, to derive 
empirically-based error models for the data. The error models were used to generate uncertainty in tributary 
and residual inflows in the Namoi River Integrated Quality and Quantity Model (IQQM). Several scenarios 
were run, including empirically-derived best-fit, empirically-derived Gaussian and standard Gaussian error 
models, with reference to a baseline simulation where the data are assumed to be error free. Analysis of end-
of-system flows showed that there was no conclusive difference in the effect of the error models; however, 
this was likely to be due to the addition of random rather than auto-correlated errors, which arise from fitting 
of rating curves to gaugings. This study highlights the need for further investigation into rating curve 
uncertainty, error autocorrelation and sampling of error models. 
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INTRODUCTION 

Many uncertainty analysis methods in hydrological modelling require the specification of error 
models (see for example, Resfgaard et al., 2007). These error models apply to a number of 
variables, including input data, parameters and output data, and define the probability distribution 
of errors in the data or parameters. Frequently, the error models are assumed to have a Gaussian 
distribution, with a mean of zero and standard deviation of one, though other probability 
distributions are also considered such as log-normal and rectangular. The error models are used to 
conduct uncertainty analyses to quantify 95% (2 σ) confidence limits for the uncertainty of the 
variable(s) concerned, or the total uncertainty of the hydrological model. 
 In many cases independent knowledge of, or validation of, error models is not undertaken, and 
recent work has highlighted this as a critical need (Di Baldassarre & Montanari, 2009; Renard et 
al., 2010). This may be in part due to the quality and quantity of data available, or due to the 
implicit assumption that standard error model distributions are correct, or due to the widespread 
use of Monte Carlo simulation techniques, which theoretically predict that the model will converge 
to the true or most likely result (Ogilvie, 1984). However, an invalidated error model is itself 
subject to uncertainty, and the implications of using an erroneous error model in uncertainty 
analysis of model simulations needs to be considered, especially by decision-makers who rely on 
such information for risk assessments. 
 In addition to records of stage height, gauging stations also contain substantive other 
information which could be used to inform error models of flows. An example of such information 
is the percentage deviation in the rating curve from each gauging. In this paper we explore the 
concept further, using an Integrated Quality and Quantity Model (IQQM) developed for the Namoi 
River, Australia. The Namoi IQQM has been widely used in water resource assessments in the 
Murray-Darling Basin (e.g. CSIRO, 2007), though uncertainty of the model remains unquantified. 
Our aims are to: (1) use gauge information to define empirically-based error model distributions 
for flow data which is input into the model as tributary and residual inflows; (2) compare the 
results of an uncertainty analysis using these empirical error models, with standard Gaussian error 
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models; and (3) evaluate the implications of using empirical versus assumed error models on the 
uncertainty of end-of-system flow predictions and how this could impact decision-makers.  
 
 
METHODS 

Namoi catchment and IQQM 

The Namoi River is one of several major regulated river systems draining the Murray-Darling 
Basin in inland southeastern Australia. It is located at approximately 31°S and 150°E and flows in 
a northwesterly direction from headwaters in the highlands, to the Barwon River at Walgett. The 
catchment area is around 40 000 km2 (CSIRO, 2007). The river is fed by six main tributaries: 
Macdonald River (upper Namoi River), Peel River, Manilla River, Mooki River, Coxs Creek and 
Baradine Creek, and at the lower end of the system, the river splits into multiple anabranches and 
effluent streams. Flows are regulated by two large storages in the upper catchment, Split Rock 
Dam (397 GL) and Keepit Dam (425 GL). There are also numerous minor dams, re-regulating 
structures and on-river storages such as Mollee Weir. 
 The catchment has an extensive network of streamgauges. The earliest gauges were established 
on the Namoi River in the 1890s, though many did not commence until after the 1950s, coinciding 
with construction of the major dams and significant irrigated agricultural development in the 
catchment. The gauges vary in their infrastructure and instrumentation, but most consist of 15-min 
automatic stage recorders. The data, including stage height, gaugings, rating curves and cross-
sections is stored in a HYDSTRA database owned by the NSW Office of Water. The stability of 
each gauge control, affecting the reliability of rating curves, varies significantly with control type 
and sediment movement through the systems. Artificial control structures include weirs, culverts and 
gravel crossings, though for many gauges the control is natural bedrock or channel alluvium. 
 An IQQM of the Namoi River and major tributaries was first developed in the late 1990s by 
the New South Wales government, and has since been used extensively for water resource 
assessments of the catchment. IQQM is a suite of integrated component models (e.g. crop water 
models, reservoir models, channel routing models, etc.) that simulates flows at a daily time-step, 
including hydrological gains, losses, extractions, management rules and flow routing through a 
river system. It has a node-link structure, with inputs of climate and streamflow time series data, 
fixed parameters and other boundary conditions such as maximum storage volumes. The Namoi 
IQQM is divided into 17 reaches determined by the location of reliable streamflow gauges on the 
river. Each reach is calibrated separately and includes variables such as tributary inflows, residual 
or ungauged inflows, lumped irrigation diversions, lumped stock and domestic diversions, town 
water supply, groundwater losses and gains, effluent flows and lumped losses. Full descriptions of 
the Namoi model, data and calibration are provided in CSIRO (2007). 
 
Inflow nodes, error models and error sampling 

The focus of this study is uncertainty of the tributary and residual inflow nodes in each reach (see 
list in Table 1). For simplicity, any uncertainty of the other model variables, including uncertainty 
of the flow data used for calibration of the model, was assumed as zero. The gauges that were used 
to estimate the tributary and residual inflows in the original model set-up were analysed 
accordingly to determine and compare different empirical error models for the streamflow data.  
 To define the error models for each gauge, we used the percentage deviations in the rating 
curves from the gaugings (calculated for each gauging as –[gauging – rating curve]/rating curve × 
100). These data are auto-generated by HYDSTRA and can be used to indicate rating curve 
uncertainty from the distribution, and minimum and maximum values of the deviations (Fig. 1). 
For example, some gauges show a high proportion of deviations greater or less than 10%, 
especially at low stage / low discharge indicating a substantial component of rating uncertainty in 
the streamflow data. In reaches 1, 4 and 6, residual inflows were estimated using flow data from 
two gauges, so the percentage deviations from the relevant gauges were combined. 
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Table 1 Gauges used to provide streamflow data for tributary and residual inflows in the Namoi IQQM. 
Deviations in gaugings Inflow node Gauge 
No. Min, max 

(%) 
Best–fit 
distributiona 

419043 Manilla R @ downstream 
Split Rock Dam 

363 –85, 100 Cauchy and 
Johnson SU 

Upper Manilla 
River 

419053 Manilla R @ Black Springs 249 –180, 65 Cauchy 
Macdonald River 419005 Namoi R @ North Cuerindi 639 –707, 79 Cauchy 
Halls Creek 419029 Halls Crk @ Ukolan 217 –226, 100 Cauchy 
Peel River 419006 Peel R @ Carrol Gap 783 –490, 100 None (Cauchy) 
Mooki River 419027 Mooki R @ Breeza 381 –184, 100 Cauchy 
Coxs Creek 419032 Coxs Crk @ Boggabri 158 –57, 100 None (3P log–

logistic) 
Maules Creek 419051 Maules Crk @ Avoca East 221 –88, 32 Cauchy, 3P log–

logistic, 4P burr  
Baradine Creek 419072 Baradine Crk @ Kienbri 125 –48, 91 None (3P log–

logistic) 
Reach 1 residual Combined 419053 & 419029 466 –226, 100 Cauchy 
Reach 2 residual 419029 Halls Crk @ Ukolan As above As above As above 
Reach 3 residual 419029 Halls Crk @ Ukolan As above As above As above 
Reach 4 residual Combined 419027 & 419006 1164 –490, 100 None (Cauchy) 
Reach 5 residual 419032 Coxs Crk @ Boggabri As above As above As above 
Reach 6 residual Combined 419051 & 419032 379 –88, 100 None (Cauchy) 
Reach 7 residual 419072 Baradine Crk @ Kienbri As above As above As above 
Reach 8 residual 419032 Coxs Crk @ Boggabri As above As above As above 
Reach 9 residual 419072 Baradine Crk @ Kienbri As above As above As above 
Reach 10 & 11 n/a n/a n/a n/a 
Reach 12 residual 419072 Baradine Crk @ Kienbri As above As above As above 
Reach 13 residual 419072 Baradine Crk @ Kienbri As above As above As above 
Reach 14–17 419072 Baradine Crk @ Kienbri As above As above As above 
a3P and 4P indicates 3 parameters and 4 parameters, respectively. 
 
 
 
 Best-fit distributions of the deviations in gaugings from each gauge were determined using the 
Kolmogorov-Smirnov, Anderson-Darling and Chi-squared goodness-of-fit tests. The distributions 
were accepted if at least two of the three tests were significant at the 95% level. Where none of the 
tests were significant (gauges 419006, 419032, 419072, combined 419027-006, combined 419051-
032) the closest fitting distribution was selected (indicated in brackets in Table 1). For comparison, 
normal distributions were also fitted to the deviations for each gauge. 
 Replicate versions of the Namoi IQQM were created to run the following scenarios:  
 

1. Original IQQM with no error models on the inflow nodes. 
2. Modified IQQM with empirical best-fit error distributions on all inflow nodes; upper and 

lower limits of the distribution set as the minimum and maximum deviations.  
3. Modified IQQM with empirical normal error distributions on all inflow nodes; upper and 

lower limits of the distribution set as the minimum and maximum deviations.  
4. Modified IQQM with standard normal distribution (mean = 0 and standard deviation = 1) on 

all inflow nodes. Upper and lower limits of the distribution set as infinity.  
 

 The models were run for the default period of 1 February 1895 to 30 June 2006. The IQQM 
adds random errors as a percentage of flow onto the time series in each node using the parameters 
of the distribution and a random number generator. Total end-of-system flows were compared 
under each scenario for the total run period, annually and daily. 
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Fig. 1 Histogram of the percentage deviations in gaugings for 419027 Mooki R @ Breeza, showing the 
best-fit distribution of Cauchy, and the fitted normal distribution.  

 
 
Table 2 Comparison of end-of-system flows over the total run period 1 January 1895–30 June 2006. 
 Error free Empirical best-fit Empirical normal  Standard normal  
Total (ML) 66 440 869 66 318 439 67 155 416 66 452 567 
Mean (ML d-1) 1632 1629 1649 1632 
Std dev. (ML d-1) 7299 7276 7362 7295 
 
 
RESULTS 

The difference in end-of-system flows over the 110-year run period is negligible, regardless of 
which, if any, error model is used (Table 2). This was a somewhat unexpected result, and we 
suggest that it is probably due to the addition of random errors to the flow time series rather than 
auto-correlated errors, which are more likely. The routing on links was removed and the models 
were run again to check whether the routing was also a factor, but similar results were obtained. 
The results suggest that any differences in daily flows with random errors are averaged out through 
the model over longer time periods, compared with a model that is error free.  
 A comparison of end-of-system flows for each year revealed some differences between the 
error models, with the empirically derived normal error distributions resulting in predicted flows 
that were slightly higher (average +2%) than the error free model and other models (Fig. 2). The 
flows ranged from 90 to 110% of error free annual flow; however, it is probable that this range 
could become much larger using auto-correlated rather than random errors. A check of the years 
with the 10 highest and 10 lowest values was made to determine whether there were any 
correlations with wetter or drier conditions. For all the error models, these mostly coincide with 
drier, lower flow years, such as 2002. 
 At a daily time-scale, the addition of error models shows an impact on simulated flows, 
though there are no clear trends in how these differ with the choice of error distributions (Fig. 3). 
Similar checks by removing all routing were also undertaken, which revealed a much greater 
discrepancy between the models, though no consistent trends were evident over time (Fig. 3(b)). 
The results suggest that storage in the reaches plays a key role in dampening the effects of additive 
random errors over short time-scales. As a result, errors are cancelled out rather than persist.  
 
 
DISCUSSION 

This study aimed to evaluate the impact and implications of using empirically-based error models 
versus assumed standard error models in uncertainty analysis of a river system model. To date, this 



Propagation of input errors: implications for model simulations and risk analysis 
 

105
 

 
Fig. 2 Comparison of annual end-of-system flows, 1895–2006. 

 
 

 
Fig. 3 Comparison of daily end-of-system flows, November–December 2003. (a) IQQM with channel 
routing on links; (b) IQQM with all routing removed.   

 
 
type of analysis has been confined to simpler rainfall–runoff models with a focus on rainfall 
uncertainty, and rarely have empirical data been used to provide baseline information (e.g. 
Kavetski et al., 2006; Thyer et al., 2009; McMillan et al., 2010).  
 While we found no convincing evidence in favour of using empirically-derived error models 
over standard Gaussian models, the results highlight a key outcome: that the choice of error 
sampling can have a substantial impact on uncertainty propagation. Here we added random errors 
to the inflow nodes in the Namoi IQQM, and over longer time periods (decades) these were shown 
to be averaged out at the end-of-system, regardless of the error distribution used, whereas on any 
day the errors can actually be quite significant. These findings have two important implications:  
 First, a major source of uncertainty in the flow data is through rating curve uncertainty which 
generates auto-correlated rather than random errors in the time-series; hence, further work on error 
sampling and serial correlation of errors in river models is required. Rating curve uncertainty is 
particularly relevant in the Namoi catchment and others, where many of the gauges have natural 
controls and experience continuous changes in channel geometry, thus affecting the stage–
discharge relationship over time. For these gauges, the rating curves are periodically modified to 

(a) (b)
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reflect changing conditions, but despite extensive efforts, it proves an ongoing challenge to capture 
the exact timing and pattern of rating curve shifts based on the existing and historical frequency of 
gaugings. Nonetheless, the gaugings and rating curves contain additional useful information that 
can be better used for predicting shifts and autocorrelation of errors. These should be explored and 
included in methods addressing uncertainty in streamflow data where required. 
 Second, the analysis of empirically-derived error models for inflows provided some important 
insights into the reliability of the Namoi IQQM and whether the model is fit-for-purpose. The 
Namoi IQQM has been widely used for water resources decision-making in the Murray-Darling 
Basin, particularly through simulations of the total volume, frequency and reliability of end-of-
system flows under different climatic, management and development scenarios (e.g. CSIRO, 2007; 
MDBA, 2010). Our analysis of error models based on the deviations in gaugings indicates that at a 
model scale, the errors on the streamflow data from each gauge may be relatively small. The 
results also imply that the reliability of model simulations increases with run time (i.e. from daily 
to decadal time-scales) as a result of dampening and compensation of errors, though for individual 
days or years the errors can still be quite large.    
 
 
CONCLUSIONS 

Empirical data provide a fundamental source of information for uncertainty assessments and risk 
analysis of hydrological models. At the river model scale and over longer decadal run times, 
additive random errors on inflows were averaged out providing no clear guidance on the choice of 
error distributions at this stage. However, further work incorporating rating curve uncertainty, 
error autocorrelation and error sampling is required. 
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