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Abstract A major risk concerning the modelling of hydrological processes with conceptual models is the 
optimization of the parameters because they cannot be directly measured in the field, mainly in nonlinear 
models. Several optimization methods have been tested in the past during the calibration of such models, but 
it is difficult to ensure that the final values are not trapped in a local minimum. Thus, the difficulties 
involved in calibration of hydrological models have been partly attributable to the lack of robust 
optimization tools. This paper presents the essential concepts and application to optimize the main 
parameters in a conceptual hydrological model, with a global optimization method known as Repulsive 
Particle Swarm (RPS), which is a variant of the Particle Swarm Optimization (PSO) method. The 
hydrological model that was chosen is the tank model, whose basic principle consists of representing the 
river basin as a set of tanks in which the outflows of each tank are proportional to the water height from the 
respective outlets. The tank model is nonlinear and mathematics is nearly useless for nonlinear problems. 
Therefore, mathematics could not be used for the tank model calibration, and consequently, the RPS 
technique seems to be suitable for such a task. The optimization technique was tested with the field data 
from Ishite River Dam, which is the reservoir that supplies water to the city of Matsuyama, Japan. On the 
basis of these results, the parameter values are given, which could serve as an initial estimate for other 
similar Japanese watersheds. 
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INTRODUCTION 

Optimization is a common problem in many fields of science. The optimization of a mathematical 
function corresponds to the search of its maximum or minimum value. These functions could also 
have a set of restrictions for the variables to be optimized. Many techniques have been proposed in 
order to find these values. However, most of these traditional techniques are not very efficient for 
solving nonlinear optimization problems. 

The major problem concerning the use of conceptual models in hydrological prediction is the 
need for parameters which cannot be directly measured in the field, mainly in nonlinear models. It 
is difficult to ensure that the final values for the parameters are not a result of either a local 
minimum or another trap. Therefore, more robust algorithms are required to estimate the 
parameter’s final values. Particle Swarm Optimization (PSO) is a population-based stochastic 
optimization technique, inspired by social behaviour of bird-flocking or fish-schooling. It shares 
many similarities with evolutionary computation techniques such as Genetic Algorithms (GA) 
(Santos et al., 2003). The system is initialized with a population of random solutions and searches 
for optima by updating generations. However, unlike GA, PSO has no evolution operators such as 
crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem 
space by following the current optimum particles. The detailed information will be given in the 
following sections. Compared to GA, the advantages of PSO are that PSO is easy to implement 
and there are fewer parameters to adjust. PSO has been successfully applied in many areas: 
function optimization, artificial neural network training, fuzzy system control, and other areas 
where GA can be applied. The objective of this work is to use Repulsive Particle Swarm (RPS) 
method of optimization, which is one of the variants of PSO, for application with the tank model, 
which is a hydrological model whose basic principle consists of representing the river basin as a 
set of tanks in which the outflows of each tank are proportional to the water height from the 
respective outlets for the reservoir of Ishite dam that supplies water to the city of Matsuyama, 
Japan. The paper presents the general details of the hydrological modelling with the RPS method. 
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REPULSIVE PARTICLE SWARM 

The Repulsive Particle Swarm (RPS) proposed by Urfalioglu (2004) is a method of optimization 
that is a variant of the particle swarm optimization (PSO). It is particularly effective in finding out 
the global optimum in very complex search spaces; although, it may be slower on certain types of 
optimization problems. 
 The Particle Swarm Optimization (PSO) was invented by Eberhart & Kennedy (1995) 
inspired by simulating the behaviour of birds. This method is an instance of a successful 
application of the philosophy of bounded rationality and decentralized decision-making to solve 
the global optimization problems (Simon, 1982). It is observed that a swarm of birds or insects or 
a school of fish searches for food, protection, etc. in a very typical manner. If one of the members 
of the swarm sees a desirable path to go, the rest of the swarm will follow quickly. Every member 
of the swarm searches for the best in its locality and learns from its own experience. Additionally, 
each member learns from the others, especially from the best performer among them. Even human 
beings show a tendency to learn from their own experience, their immediate neighbours and the 
ideal performers. The particle swarm method of optimization mimics the said behaviour. Every 
individual of the swarm is considered as a particle in a multidimensional space that has a position 
and a velocity. The particles fly through hyperspace and remember the best position that they have 
seen. Members of a swarm communicate the good positions to each other and adjust their own 
position and velocity based on these good positions. There are two main ways this communication 
is done: (i) “swarm best” that is known to all, (ii) “local bests” are known in neighbourhoods of 
particles. Updating the position and velocity is done at each iteration as follows: 

vi+1 = ωvi + c1r1( ix̂  – xi) + c2r2( gix̂  – xi) (1) 
xi+1 = xi + vi+1 (2) 

where x is the position and v is the velocity of the individual particle, the subscripts i and i + 1 
stand for the recent and the next (future) iterations, respectively; w is the inertial constant, good 
values are usually slightly less than 1; c1 and c2 are constants that say how much the particle is 
directed towards good positions, good values are usually right around 1. Further, r1 and r2 are 
random values in the range [0, 1], ix̂  is the best that the particle has attained in the past, gx̂  is the 

global best seen by the swarm. This can be replaced by Lx̂ , the local best, if neighbourhoods are 
being used. 
 The traditional RPS gives little scope of local search to the particles. They are guided by their 
past experience and the communication received from the others in the swarm. We have modified 
the traditional RPS method by endowing stronger (wider) local search ability to each particle. 
Each particle flies in its local surrounding and searches for a better solution. The domain of its 
search is controlled by a new parameter (nstep). This local search has no preference to gradients in 
any direction and closely resembles tunnelling. This added exploration capability of the particles 
brings the RPS method closer to what is observed in real life. However, in some cases, a 
moderately wide search (e.g. nstep = 9) works better. It has been said that each particle learns from 
its “chosen” inmates in the swarm. Now, at the one extreme is to learn from the best performer in 
the entire swarm. This is how the particles in the original PS method learn. However, such 
learning is not natural. It is neither expected nor even feasible that an individual knows of the best 
performer in the population and interacts with all others in the swarm, and therefore relies only on 
the possibility of a limited interaction and limited knowledge that any individual can possess and 
acquire. Then, our particles do not know the “best” in the swarm. Nevertheless, they interact with 
some chosen inmates that belong to the swarm. Now, the issue is: how does the particle choose its 
inmates? One of the possibilities is that it chooses the inmates nearer to it. But, since our particle 
explores the locality by itself, it is likely that it would not benefit much from the inmates closer to 
it. Other relevant topologies are (the celebrated) ring topology, ring topology hybridized with 
random topology, star topology, von Neumann topology, etc. 

Let us visualize the possibilities of choosing (a predetermined number of) inmates randomly 
from among the members of the swarm. This is much closer to reality in the human world. When 
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we are exposed to the mass media, we experience this. Alternatively, we may visualize our 
particles visiting a public place (e.g. railway platform, church, etc.) where it (he) meets people 
coming from different places. Here, geographical distance of an individual from the others is not 
important. Important is how the experiences of others are communicated to us. There are many 
sources of such information, each one being selective in what it broadcasts and each of us selective 
in what we attend to and, therefore, receive. This selectiveness at both ends transcends the 
geographical boundaries and each one of us is practically exposed to randomized information. Of 
course, two individuals may have a few common sources of information. 

We have used these arguments in the scheme of dissemination of others’ experiences to each 
individual particle. Presently, we have assumed that each particle chooses a pre-assigned number 
of inmates (randomly) from among the members of the swarm. However, this number may be 
randomized to lie between two pre-assigned limits. 
 
 
TANK MODEL 

Many models have been developed to simulate rainfall–runoff processes, and one of them is 
known as the “tank model”. The model has been modified and some mathematical tools have been 
adapted in order to improve its efficiency (Lee & Singh, 1999). A tank model is a conceptual 
representation of a basin hydrological process. It simulates the wetness of the several soil layers by 
tanks arranged vertically in series, and each one adapted with one or more outlets to account for 
water flow and filtration to lower layers. 

Precipitation is put into the top tank, and evaporation is subtracted from the top tank. If there is 
no water in the top tank, evaporation is subtracted from the second tank; if there is no water in 
both the top and the second tank, evaporation is subtracted from the third tank. The outputs from 
the side outlets are the calculated runoffs. The output from the top tank is considered as surface 
runoff, output from the second tank as sub-base runoff and output from the third tank as baseflow. 
Thus, the outflow or seepage from each tank is assumed to be proportional to the water height 
from the whole position of discharge or seepage. Water depth of the tank is assumed to be the 
storage in the basin. In this paper, the tank model was implemented with three tanks. Figure 1 
shows how the tank model was implemented. 
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Fig. 1 Schematic design of a tank model with three tanks. 
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The parameters to be optimized are the runoff parameters a1, a2, a3 and a4; the infiltration 
parameters b1, b2 and b3; and the height of the runoff outlets h1, h2, h3 and h4. These quantities and 
the tank model are defined by the following expressions: 

( ) ( )[ ]1111 htXaty −=  (3) 
( ) ( )[ ]2122 htXaty −=  (4) 
( ) ( )[ ]3233 htXaty −=  (5) 
( ) ( )[ ]4344 htXaty −=  (6) 
( ) ( )tXbtz 111 =  (7) 
( ) ( )tXbtz 222 =  (8) 
( ) ( )tXbtz 333 =  (9) 
( ) ( ) ( ) ( ) ( )tytytytytQ 4321 +++=  (10) 
( ) ( ) ( ) ( ) ( ) ( )tztytytPtXtX 12111 1 −−−+−=  (11) 
( ) ( ) ( ) ( ) ( )tztytztXtX 23122 1 −−+−=  (12) 
( ) ( ) ( ) ( ) ( )tztytztXtX 34233 1 −−+−=  (13) 

where t is the day index; y1(t), y2(t), y3(t) and y4(t) are the runoffs from outlets at day t; z1(t), z2(t) 
and z3(t) are the values of infiltration of each tank at day t; X1(t), X2(t) and X3(t) are the storages in 
depth at day t; Q(t) is the total runoff at day t; and P(t) is the precipitation at day t. 
 
 
FIELD DATA 

The Ishite River basin is a sub-basin of Shigenobu River basin in Matsuyama city located in 
Shikoku Island, Japan (Fig. 2). The basin is 72.5 km2, the river is 11 km long, and most of the 
basin is covered by pine forest. The daily rainfall and runoff data from January 1992 to December 
2003 at Ishite River Dam were used. 
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Fig. 2 Map of the Ishite River basin. 
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 The annual mean precipitation depth is between 1300 and 1500 mm, and the rainy season is 
from the middle of June to the middle of July, with the typhoon season being from August to 
October. The selected period of observed data for daily rainfall and runoff was 1992 to 1993 for the 
calibration process, while the years from 1994 up to 2003 were used to validate the calibrated tank 
model.  
 
 
APPLICATION AND RESULTS 

Setting of the RPS parameters 

The RPS method contains some probabilistic and deterministic components which are controlled 
by some algorithmic parameters. For the method to perform optimally, these parameters must be 
chosen carefully. The following set of parameters was used in the present work: N = 100, NN = 25, 
MX = 100, NSTEP = 15, ITRN = 500, ITOP = 3 and NSIGMA = 1. The parameter N is the 
population size, in most of the cases N = 30 works well, but its value may be increased to 50 or 
100. The parameter NN is the size of randomly chosen neighbours, which ranges from 15 to 25 
(but sufficiently less than N) is a good choice. The parameter MX is the maximal size of decision 
variables. In f(x1, x2,..., xm), m should be less than or equal to MX. The parameter ITRN is the 
number of iterations, which may depend on the problem. Commonly, the range from 200 (at least) 
to 500 iterations may be good enough. The ITOP sets the topology, i.e. if less than or equal to 1, it 
means ring topology; ITOP equal to 2 means ring and random topology; ITOP larger than or equal 
to 3 means random topology. NSIGMA sets the existence or not of chaotic perturbation, i.e. if 
NSIGMA is equal to 0, it means no chaotic perturbation, and NSIGMA equal to 1 means chaotic 
perturbation. In certain cases the one or the other specification works better. Different 
specifications of parameters may suit different types of functions or dimensions – one has to do 
some trial and error. 
 
Optimization of the rainfall–runoff model 

There are 11 parameters in the tank model to be determined by optimization, which are a1, a2, a3, 
a4, b1, b2, b3, h1, h2, h3 and h4. The ranges for each parameter are presented in Table 1. The initial 
storages for each tank were set as X1 = 0.00 mm, X2 = 0.00 mm and X3 = 100.00 mm. 
 
 
Table 1 Ranges for the tank model parameters. 

Parameters Limits 

1a  2a  3a  4a  1b  2b  3b  1h  2h  3h  4h  

Lower 0.001 0.001 0.01 0.01 0.15 0.01 0.0 10 10 10 10 
Upper 0.1 0.1 0.3 0.7 0.9 0.04 0.3 90 120 120 120 
 
 
 The following objective function F, to be minimized, was chosen: 
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where Qo and Qc are the observed  and calculated runoff (mm), respectively, and n is the number 
of days in the data set. As stated earlier, the period used for the calibration was from January 1992 
to December 1993, while the period from January 1994 to December 2003 was used to validate the 
calibrated tank model.  
 The correlation (r) and bias (B) statistical indexes were used as criteria for evaluating the 
model performance. The correlation computes the variability of a number of predictions around 
the true value. Different from correlation, the bias is a measure of systematic error and thus it 
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calculates the degree to which the estimation is consistently below or above the actual value. High 
correlation alone does not mean high accuracy. For example, a significant constant bias in the 
estimations would provide the highest correlation (r = 1) but poor accuracy. As a result, the 
accuracy of estimations is better analysed by using both bias and correlation. The perfect fit 
between observed and predicted values, which is unlikely to happen, would have r = 1 and B = 0. 
Salas (1993) provides the equations to calculate these indexes. 
 The RPS method found the following parameter values a1 = 0.062, a2 = 0.098, a3 = 0.033, a4 = 
0.011, b1 = 0.168, b2 = 0.040, b3 = 0.007, h1 = 11.879 mm, h2 = 40.919 mm, h3 = 65.172 mm and 
h4 = 10.107 mm. Figure 3 shows the comparison between observed and calculated reservoir 
inflows for this calibration data set (r = 0.80 and B = –0.50 mm). The optimized parameter values 
are used to validate the tank model using the period January 1994 to December 2003, r = 0.65 and 
B = –0.14 mm, as shown in Fig. 4. These figures and indexes (high correlations and low biases) 
reveal that the calibrated tank model is very efficient for estimating reservoir inflows. 
 
 

 
Fig. 3 Hyetograph, and observed (Qo) and calculated (Qc) inflows, January 1992–December 1993 
(calibration). 

 
 

 
Fig. 4 Hyetograph, and observed (Qo) and calculated (Qc) inflows, January 1994–December 2003 
(validation). 
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CONCLUSIONS 

A conceptual hydrological model, named the tank model, was used to simulate the daily runoff in 
Ishite River basin, Matsuyama city, Japan. The main conclusions are as follows: (1) the tank 
model was shown to be useful for simulation in such a basin; (2) the RPS method was proved to be 
robust to optimize 11 parameters; (3) in order to perform optimally, the probabilistic and 
deterministic components in the RPS method were chosen carefully as N = 100, NN = 40, MX = 
100, NSTEP = 15, ITRN = 500, ITOP = 3 and NSIGMA = 1; and (4) the optimized parameter 
values are as follows: a1 = 0.062, a2 = 0.098, a3 = 0.033, a4 = 0.011, b1 = 0.168, b2 = 0.040, b3 = 
0.007, h1 = 11.879 mm, h2 = 40.919 mm, h3 = 65.172 mm and h4 = 10.107 mm, which could be 
representative for the area. 
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