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Abstract Standard approaches to water resources assessments in South Africa involve generating 
time series of natural hydrology using a hydrological model coupled with simulating reservoir 
storage, abstractions, return flows, etc. using a system yield model. To account for some of the 
uncertainties in the representivity of the natural flow simulations, the yield models currently 
include a stochastic streamflow generator and output a curve quantifying likely yields with 
different probabilities of exceedence. Recent hydrology model developments emphasise the 
importance of including parameter uncertainty, especially in ungauged basins. However, this has 
been considered difficult to achieve with existing yield models without major structural changes or 
large increases in computer run time. The alternative is to add a stochastic rainfall generator within 
a hydrological model that also includes parameter uncertainty, and to use the output ensembles 
with a yield assessment model without using the stochastic streamflow generation component. 
This paper reports on a comparison of the two approaches in terms of modelling efficiency, 
similarity of yield probability assessments, and the relative contributions of parameter and 
stochastic uncertainty. This initial study is limited to a single basin in KwaZulu-Natal Province, 
South Africa.  
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INTRODUCTION 

Recent approaches to hydrological and water resources simulation modelling have emphasized the 
need to include uncertainty (Pappenberger & Beven, 2006). In estimating the yield from storage 
reservoirs in ungauged (or partially gauged) basins, one of the uncertainties is related to the 
simulation of a representative historical sequence of inflows (hydrological model uncertainty) 
from observed climate inputs. An additional source of uncertainty is associated with the extent to 
which such a historical sequence is representative of all possible sequences that might affect the 
yield. The duration and severity of droughts effectively determine the yield of a reservoir and it is 
never certain that the critical period drought is included in the historical hydrology. This problem 
has been dealt with in the past by generating statistically plausible flow time series from a single 
historical time series using multi-site, autoregressive models (Pegram & James, 1972; Salas & 
Pegram, 1978). These models have been developed and applied over a number of years and are 
part of standard practice in South Africa (Basson et al., 1994). The main advantage of the 
stochastic model is that it can generate a large number of sequences, each with the same statistical 
characteristics, but not necessarily producing the same reservoir yield. The range of possible 
reservoir yields generated from a set of stochastic sequences represents the uncertainty in the yield 
estimate relating to the duration and severity of future possible droughts. However, the 
uncertainties associated with the statistical properties of the historical hydrology have been largely 
ignored in the past.  
 One of the possible approaches to combining the uncertainties is to generate an ensemble of 
historical flow time series based on model parameter probability distributions, rather than single 
parameter sets, within a rainfall–runoff model. The median hydrology time series can then be used to 
seed the stochastic streamflow generator in the yield model to generate an initial yield probability 
curve. The extremes of the flow ensembles generated by the uncertain rainfall–runoff model can be 
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used with the yield model (but without the streamflow stochastic sub-model) to generate likely 
extreme yields that could be used to adjust the initial yield curve. This approach can be rather time 
consuming and does not properly integrate the two sources of uncertainty. This paper examines an 
alternative approach that combines the hydrological uncertainty with the stochastic uncertainty 
within the rainfall–runoff model, by using a multi-site stochastic rainfall model. These results are 
compared to those generated by the traditional stochastic streamflow approach.  
 
 
STUDY AREA 

The study area adopted for this initial test of the approach is the 925.1 km2 catchment of the 
Mngeni River basin above Midmar Dam in KwaZulu-Natal Province of South Africa. The climate 
is sub-humid with a mean annual rainfall and potential evaporation of approx. 1000 mm and 
1300 mm, respectively. The rainfall occurs dominantly within the summer period, the topography 
consists of undulating hills, while the land use is mainly commercial dairy farming, with some 
plantation forestry. The total area has been divided into three modelling units (U20A to C), each 
with its own set of parameter and climate data inputs. There is a streamflow gauging station 
located at the outlet of sub-basin U20B (U2H007; area of 352.9 km2) for which relatively high 
confidence naturalized observed streamflow data are available (Midgley et al., 1994). For the 
purposes of this study the catchment area is assumed to be relatively undeveloped. 
 
 
GENERATING THE HYDROLOGY ENSEMBLES  

The hydrology ensembles have been generated with an uncertainty version of the monthly time-
step Pitman rainfall–runoff model (Hughes et al., 2006). The model is a semi-distributed 
conceptual representation of the main hydrological processes assumed important at scales of 
approx. 50–5000 km2. The model has 18 main parameters that can be specified as uncertain using 
normal, log-normal or uniform probability distributions. Kapangaziwiri & Hughes (2008, 2009) 
and Kapangaziwiri et al. (2009) provide details of the parameter estimation and uncertainty 
framework within which this version of the model has been developed. The parameter estimation 
process is based on available physical property data (AGIS, 2007), including topography, soils, 
geology and vegetation. The uncertainty ranges of the parameters are partly based on the spatial 
variability of the physical property data within a sub-basin (modelling unit), but may also be used 
to reflect the lack of information used to quantify some of the parameters. 
 Within the original uncertainty version of the model each ensemble is based on independent 
Monte-Carlo samples from the parameter distributions for each sub-basin. The outputs from the 
model are the time series of each ensemble (typically between 5000 and 10 000) plus a text file 
listing the 95, 50 and 5% exceeded flows for each month of the time series, together with the 
observed flows if they are available, and specified as part of the model input stream. The latter 
output can be used to visually assess the range of uncertainty and the extent to which the range of 
simulated flows includes the observed data. For the purposes of this study a second uncertainty 
version of the model was created that reads in a number of different rainfall time series and 
generates independent parameter samples for each one. The use of 500 rainfall scenarios and 500 
parameter samples results in a total of 250 000 ensembles. To limit computer run time, the only 
outputs saved in this version are the simulated flow time series of each ensemble. 
 
Stochastic rainfall inputs 

The multisite monthly rainfall model employed in this study was based on the daily model 
developed by Srikanthan & Pegram (2009). The main features of this model are that it 
stochastically links the spatial and also the temporal dependence between the gauges using a 
multivariate autoregressive time series model and it post-conditions the simulations to recapture 
the temporal correlations and marginal statistics of the annual rainfall amounts. The first feature is 



Hydrological and stochastic uncertainty 
 
 

129

fairly standard, while the second ensures that the observed fluctuations of wet and dry years is 
recovered, a very necessary condition for long term reservoir yield analyses. Extensive validation 
tests were done to ensure that the model captures the features described. Table 1 summarises the 
statistics of the forcing historical rainfall data and the range of equivalent values for 500 stochastic 
sequences. The sequences generally give lower rainfalls than the historical data based on annual 
totals (see the lower values of skewness, maximum and minimum in particular). 
 
 
Table 1 Annual summary statistics for sub-basin U20A for the historical rainfall data and the 500 stochastic 
sequences. 

Stochastic rainfall sequences Statistic Historical rainfall 
Upper   Lower 

Mean (mm) 1010.0 1010.0 1009.9 
St. deviation (mm) 184.7 184.5 183.6 
Skewness 0.95 0.94 0.39 
Maximum (mm) 1586.8 1586.7 1527.6 
Minimum (mm) 682.5 682.7 619.4 
 
 
Parameter uncertainty ensembles 

The rainfall data inputs into this model run were the same as those used to force the stochastic 
rainfall model and are recently updated sub-basin rainfalls based on available gauge information. 
The period of record is from October 1920 to September 2005. A total of 10 000 parameter 
samples were used and the results suggest a range of mean annual runoff values for U20B of 54.8 
to 97.1 × 106 m3, compared with the naturalized observed value of 79.8 × 106 m3. Further 
comparisons between the time series of the ensembles and naturalized flows (and the objective 
functions) suggest that model has generated behavioural simulations that bracket the observed 
flow sequences and that the range of uncertainty is not excessive. Figure 1 illustrates the frequency 
distribution of minimum total flow volumes over all 24-month periods for all of the ensembles.   
 
Parameter and rainfall uncertainty ensembles 

The 500 rainfall scenarios generated from the stochastic model were combined with 500 parameter 
samples, using the same parameter distributions as in the previous run of the model, to generate 
250 000 ensembles. These were reduced to a sample of 500 ensembles for use in the yield model 
by simple Monte Carlo sampling from the total of 250 000 after ranking all ensembles on the basis 
of the minimum 24-month reservoir inflow volumes (outlet of sub-basin U20C). This minimum 
inflow volume is used as a simple surrogate for the reservoir yield and the duration (24 months in 
this example) would be set to the critical drought period of the reservoir. Figure 1 illustrates that 
the frequency distributions of minimum flow volumes are the same for the total group of 
ensembles and the sample of 500. Figure 1 also suggests that the stochastic rainfall model has 
introduced some bias in the streamflow ensembles in that the median minimum volume (193 ×  
106 m3) is substantially lower than the median given by ensembles based on only parameter 
uncertainty (221 × 106 m3). The reasons for this are not clear at this stage, but the result is 
consistent with the comparisons between the statistical properties of the rainfall sequences and the 
historical rainfall (Table 1). 
 
 
DETERMINING THE YIELD PROBABLITY CURVE 

The yield of the Midmar Dam was determined using the Water Resources Modelling Platform 
(Mallory et al., 2010). This is a water resources yield model which is integrated into a database of 
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water use and hydrological information for South Africa and includes numerous utilities and 
algorithms for dealing with complex modelling problems, such as ecological flow requirements 
and reservoir operating rules. The model is able to generate a single “historical” yield estimate 
based on a single inflow time series input, or the single inflow input can be used as a seed for an 
ARMA stochastic generator and the resulting yields ranked to produce a yield exceedence 
probability curve. A yield probability curve can also be generated from multiple inputs of inflow 
time series and is therefore ideally suited for this specific study. 
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Fig. 1 Frequency distributions of minimum 24-month flow volumes for the 10 000 parameter 
ensembles and the two rain and parameter ensembles (250 000 total and 500 sample). 
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Fig. 2 Yield exceedence (probability) curves based on different yield analyses. 

 
 
RESULTS 

Figure 2 shows the results of the different yield analyses. The “streamflow stochastics” curve is 
based on seeding the stochastic streamflow model in the yield model with the median hydrology 
ensemble generated by the rainfall–runoff model using a single historical rainfall time series. The 
three horizontal lines represent the historical yield (i.e. no streamflow stochastic generation) based 
on the 5% (“max flow”), 50% (“median flow”) and 95% (“min flow”) exceeded flow ensembles 
from the rainfall–runoff model. The “rain stochastics and parameters” curve represents the 
distribution of historical yield estimates for the 500 sample ensembles generated by combining 
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stochastic rainfall sequences and parameter uncertainty in the rainfall–runoff model. An immediate 
observation is that the yields generated by the streamflow stochastic approach are biased to lower 
yields compared with the historical yield generated from the median hydrology (used to seed the 
stochastic streamflow model). This result is similar to that noted for the stochastic rainfall model 
and requires further investigation. 
 Two additional streamflow stochastic yield analyses were based on the two extreme ensemble 
outputs from the rainfall–runoff model with only parameter uncertainty. These two extremes 
represent the 5% and 95% exceeded simulated flows generated by the uncertainty in the rainfall–
runoff model for each month of the time series. The yields determined from these are therefore less 
likely to occur than the yields based on the median hydrology. Figure 3 reproduces the two yield 
probability curves from Fig. 1 and adds a third line (“resampled”) to represent the effects of 
allowing for the parameter uncertainty, but still using the conventional streamflow stochastic 
model in the yield model. This curve has been produced by sampling from the three yield curves 
generated from seeding the stochastic streamflow model with the two extreme flow ensembles and 
the median ensemble. The size of the samples (500 for each of the extreme ensembles and 2000 
for the median) has been set to reflect the probability of the different flow ensembles occurring. 
The three samples were combined to produce the “resampled” yield curve which is almost 
identical to the curve based on combining all the uncertainties in the rainfall–runoff model.  
Changing the size of the samples did not make any tangible difference to the results.   
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Fig. 3 Yield exceedence (probability) curves based on different yield analyses. 

 
 
DISCUSSION AND CONCLUSIONS 

Although the yield curves in this example are not very different (a range of 151.0 to 156.8 × 
106 m3 at the 95% exceedence level), this is partly a consequence of the relatively small parameter 
uncertainty in these sub-basins which has at least some gauged streamflow data to condition the 
rainfall–runoff model. The results indicate that the use of stochastic streamflow generation within 
the yield model has accounted for a large part of our uncertainty in water resources availability and 
this has been part of practical water resources management in South Africa for many years. The 
study has demonstrated that the explicit inclusion of parameter uncertainty is possible either 
through the traditional use of streamflow stochastic generation in the yield model or by including 
the stochastic uncertainty as part of the rainfall–runoff model. The time and computer resources 
required to complete a yield analysis using the two approaches are not very different now that the 
appropriate software is available. 
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 Additional assessments of the effects of parameter uncertainty in South Africa (Kapangaziwiri 
& Hughes, 2009; Kapangaziwiri et al., 2009) suggest that there could be much larger differences 
in yield estimates in other basins. There is therefore a need to extend this type of study so that 
water resources managers can be made more aware of the uncertainties associated with the use of 
model outputs for decision making.  
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