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Abstract Water allocation models are the principal tools used to build water sharing plans in regulated river 
systems across Australia. These models associate components describing the physical system (e.g. rainfall–
runoff transformation and flow routing) and the management rules (e.g. operation of dams and irrigation 
extractions). In a context of growing pressure on water resources, the uncertainty associated with these 
highly parameterised models needs to be quantified in a defensible and transparent way. This paper is an 
exploratory analysis based on the application of two uncertainty methods to hypothetical river system case 
studies. First, a simplified model structure is developed by using existing characteristics from six regions of 
the Murray-Darling basin. Each model contains a schematic representation of the region with: (1) one 
upstream storage, (2) ungauged and gauged tributaries inflows, and (3) one downstream irrigation extraction 
point. Second, the model outputs (streamflow) are corrupted and an alternative model is calibrated based on 
the corrupted data using the standard least-squares method. Finally, the uncertainty in the output is generated 
using two uncertainty post-processors and compared with the uncorrupted (“true”) outputs using 
deterministic and probabilistic scores. The uncertainty post-processor based on the empirical distribution of 
the residuals proved simple yet effective, especially when compared to the more advanced bootstrapping 
method. It performed systematically better when applied to the stored volumes in the reservoir. However, 
the predictive uncertainty was greatly improved by the bootstrapping method to assess the uncertainty on 
streamflow. This highlights the important differences that can occur in the uncertainty analysis for a 
multivariate model. 
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INTRODUCTION 

Water allocation models are used to compare water sharing scenarios in regulated catchments in 
terms of the impacts for the water users and the environment. These models include a 
representation of the physical system with modules such as flow routing, rainfall–runoff modelling 
or groundwater/surface water interactions, as well as management components to take into account 
infrastructure such as dams, canals or extraction points. Water allocation models can be complex 
modelling structures with a large number of parameters to be calibrated on limited datasets, 
especially regarding the management aspects. At the same time, water allocation models are used 
to aid in the making of long-term decisions with important social and environmental impacts. As a 
result, the assessment of uncertainty becomes a critical task to inform the decision makers about 
the strengths and weaknesses of the model.  
 Since the early work of Beven & Binley (1992) with the Generalized Likelihood Uncertainty 
Estimation (GLUE) method, the assessment of uncertainty has become a central topic in 
hydrological sciences. A wide range of methods have been developed with two main objectives: 
(1) locate and quantify the sources of uncertainty associated with the model components (inputs, 
parameters, model structure), and (2) quantify the predictive uncertainty. The first objective 
encompasses the second one because predictive uncertainty can be seen as a by-product of a 
detailed analysis of all uncertainty sources. For example, the Bayesian total error analysis 
(BATEA, Kavetski et al., 2006) is a calibration method that jointly estimates the input and 
parameter uncertainty for a rainfall–runoff model. Once the distributions of both elements are 
estimated, the predictive uncertainty can be easily generated (Thyer et al., 2009). This type of 
approach is appealing because it offers simultaneously a diagnostic on the model behaviour and a 
better understanding of the predictive uncertainty. Methods such as GLUE (Beven & Binley, 
1992), Parameter ESTimation (PEST, Doherty, 2010) and the Shuffle Complex Evolution 
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Metropolis algorithm (SCEM,Vrugt et al., 2003) have been developed with the same objective. 
However, the application of these methods on complex models remains limited due to long 
runtimes and lack of interface between model codes and Monte Carlo samplers. Moreover, they 
require a recalibration of the models, which is not always possible if the model has been developed 
during a previous study. 
 If the objective of the uncertainty analysis is limited to a quantification of the predictive 
uncertainty, a simplified approach can be applied by lumping all the uncertainties in the error term. 
Practically, the model is run once on the calibration period to obtain a series of deviations from the 
observations (model residuals). The predictive uncertainty is then generated based on these 
residuals. This paper uses this method as a simple alternative to more sophisticated methods and 
the results are reported in later sections.  
 The estimation of the predictive uncertainty based on the model residuals is a popular 
technique in the forecasting community where deterministic forecasts are “dressed” to generate 
probabilistic forecasts (Krzysztofowicz, 1999). For simulation models, Montanari & Brath (2004) 
have proposed a parametric error model based on Normal Quantile transformed variables. Because 
water allocation models are highly parameterised, the addition of another layer of parameterisation 
in the error model does not seem an appropriate choice in a first instance according to the 
parsimony principle. Alternatively, non-parametric statistical methods, like the nearest-neighbour 
algorithm proposed by Lall & Sharma (1996), may offer a solution. This paper presents a 
comparison of two non-parametric methods to generate predictive uncertainty. The methods are 
applied on simplified water allocation models described in the following section. In the remaining 
part of this paper, the uncertainty methods are designated as the “uncertainty post-processor”. 
 
 
METHOD 

The comparison of the two uncertainty post-processors was conducted in four steps using a 
synthetic experiment modelled after the work of Renard et al. (2010): 
 

(a) Simplified water allocation models were built on six regions within the Murray-Darling Basin 
to generate “true” (albeit synthetic) time series of streamflow and stored volume (see Fig. 3 
for an example) on the period 1986–2005. 

(b) The streamflow time series resulting from step (a) were corrupted with a random 
multiplicative error to introduce gauge uncertainty. The corruption was repeated 10 times. 

(c) A model is calibrated against the corrupted streamflows with a minimization of the sum of 
squared errors on streamflow during the period 1986–1995. The calibration was repeated 10 
times on the 10 corrupted data sets. 

(d) The uncertainty post-processors were applied on the calibrated model to generate probabilistic 
outputs which were finally validated against the uncorrupted (“true”) time series via two 
performance scores computed on the validation period (1996–2005). 

 
Simplified water allocation models to generate “true” values 

The simplified water allocation models were developed at the daily time step with the Integrated 
Water Quantity and Quality simulation Model software (IQQM, Simons et al., 1996) for the 
period 1986–2005. Figure 1(a) presents the location of the regions; their characteristics are given 
in Table 1. The simplified models were not built to accurately reproduce the behaviour of the real 
systems but to provide a realistic modelling scenario regarding the model components and the 
amount of information available to calibrate them. The structure of the models is presented in 
Fig. 1(b). It includes three sub-catchments, one reservoir and one irrigation extraction point. The 
inflows from the three sub-catchments were set to three observed streamflow time series located in 
the region. The streamflow data have been selected from the high quality data set collated by Vaze 
et al. (2010); the corresponding catchments are located on Fig. 1(b). Because these catchments are 
small compared to the size of the whole region, the flows were rescaled so that the sum of the 
three mean annual flows equals the surface water availability of the region (see column 6 in 
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Table 1). A linear lag and route model was used to route the reservoir releases with a lag and 
attenuation parameters set to 1 and 3 days, respectively.  
 The capacity of the reservoir was set to the sum of the capacities of all public storages in the 
region (see column 4 in Table 1). The irrigation extractions were computed with the second crop 
model of the IQQM software to obtain a mean annual extraction equal to the one mentioned by the 
Australian Commonwealth Scientific and Research Organization (CSIRO, 2008) for each region (see 
column 5 in Table 1). This component of the model was assumed to be perfectly known (i.e. no 
uncertainty) and the extractions were treated as a fixed time series in all the tests presented here.  
 
 

 
Fig. 1 (a) Location of the six test regions and the catchments used to generate the inflows (shaded area) 
(b) Schematic diagram of the simplified water allocation model applied to each region. 

 
 
Table 1 Characteristics of the regions used to develop the simplified water allocation models (CSIRO, 
2008). 
(1) (2) (3) (4) (5) (6) 
Model Region name Area 

(km2) 
Public storage 
(106 m3) 

Irrigation use 
(106 m3/year) 

Surf. water 
availability 
(106 m3/year) 

GWYD Gwydir 24 947 1346 313 782 
NAMO Namoi 39 781 813 244 965 
PEEL Peel 4 670 65 16 189 
LACH Lachlan 85 532 1252 273 1139 
MACQ Macquarie 73 453 1530 343 1567 
UBID Upper-Murumbidgee 13 100 0* 0 1600 

* The UBID model does not take into account the reservoirs located in the Australian Capital Territory.  

 
 
 Four “true” outputs were generated with this model: (1) the stored volume in the reservoir,  
(2) the streamflow downstream of the reservoir at GS1, (3) the streamflow at GS2, and (4) the 
streamflow at the downstream end of the system at GS3. These outputs were chosen to match with 
the measurement points generally available in this type of catchment (e.g. the sub-catchment 3 is 
considered as ungauged).  
 
Corruption of the “true” streamflow data  

The “true” streamflows generated with the previous model were corrupted with an auto-regressive 
multiplicative error: 
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q*j  = qj . max(0,μj+1) (1)  
μj = α . μj-1 + (1 – α2)0.5.ξj (2)  

where qj is the true streamflow on day j, q*j the corrupted streamflow, α the autoregressive 
coefficient and ξj an uncorrelated Gaussian noise having a mean of 0 and a standard deviation of 
0.15 (streamflow error of 15%). The coefficient was set to 0.997 so that the lagged-autocorrelation 
of the error μ becomes non-significant for lags greater than 500 days. The corruption model was 
applied ten times to generate ten corrupted data sets. 
 
Calibration of the model against corrupted streamflow data 

A model with a similar structure was calibrated against the corrupted data on the calibration period 
1986–1995. In this model the inflows from the three sub-catchments were generated with the 
GR4J rainfall–runoff model (Perrin et al., 2003). The water allocation model was calibrated 
independently on the three areas delimited by the three gauging stations GS1, GS2 and GS3 (see 
Fig. 1(b)). The Levenberg-Marquardt gradient descent algorithm (Marquardt, 1963) was applied to 
minimise the sum of squared errors on the streamflows. 14 parameters were calibrated: four 
parameters for the GR4J mode on each sub-catchment and two parameters for the routing model. 
This procedure was repeated 10 times for each corrupted data set. 
 
Application of two uncertainty post-processors and validation with performance scores 

The calibrated model was run on the validation period (1996–2005) and for each day j of the 
period, 51 values (or ensembles) were generated for each of the four model outputs using two 
uncertainty post-processors. The first one, named EMP, computes the ensembles using the 
distribution of the residuals obtained from the calibration period according to: 

52/.'ˆˆ
kNjkj,

EMP +v=V ε    (3) 

with k = 1, ..51 the ensemble rank, kj
EMPV ,ˆ  the kth ensemble generated with EMP on day j, jv̂  

the simulated value from the calibrated model on the same day, N the number of time steps in the 
calibration period, )'( iε  the series of N residuals obtained from the calibration period rearranged 
in ascending order, and k/52 the Weibull estimate of the sampling frequency. With this uncertainty 
post-processor, the distribution of the residuals is invariant and equal to the one of the )'( iε .  
 A second post-processor, named KNN, was applied based on the KNN bootstrapping 
algorithm proposed by Lall & Sharma (1996). For each day j of the validation period, M days l1,.., 
lM are selected from the calibration period where 1

ˆ lv , ... Mlv̂ are the closest simulated value 

to jv̂ . These days are called the “nearest neighbours” of j. The residuals 1l
ε , ... 

Mlε corresponding to these M days are then sampled 51 times according to the sampling kernel 
proposed by Lall & Sharma (1996) that gives more weight to the closer neighbours: 

K(n) = (1/n) / ∑ =

M

n
n

1
/1  (4) 

with n the rank of the neighbour and K(n) the probability to sample this neighbour. Several values 
were tested for M and the value of 50 was retained. Finally, the ensembles are generated according 
to:  

kjkj,
KNN +v=V ''ˆˆ ε    (5) 

with )''( iε  a rearrangement of the 51 values sampled from the M nearest neighbours in ascending 
order. Because the nearest neighbours are different from one time step to another, the distribution 
of the residuals generated by this post-processor vary in time with variations driven by the 
simulated value jv̂ . 
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 The two post-processors were finally compared using the following relative performance 
score:

  

)ˆ,()ˆ,(
)ˆ,()ˆ,(

KNNEMP

KNNEMP
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+
−

=
 

(6) 

with f a performance metric and v the true value of the variable. If Rf = 0, the two post-processors 
are equivalent. If Rf  > 0, the KNN brings an improvement over EMP. Two metrics f were used to 
compute the score: 

( )∑ −
j

j,j Vv=)VRMSE(v,
2

25
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(7) 

with j the day from the validation period, vj the true value of the variable v on this day and 25,
ˆ

jV  
the median ensemble. RMSE is a deterministic score assessing the performance of the median 
ensemble only. The second metric is the Continuous Rank Probability Score (CRPS) following the 
definition of Hersbach (2000): 
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with H the Heaviside function, −∞=0,
ˆ

jV and +∞=52,
ˆ

jV . The CRPS is a probabilistic score 
comparing the distribution of the ensembles and a distribution centred on the true value vj. 
 The two relative scores RRMSE and RCRPS are finally computed for the four variables 
(streamflow on GS1, GS2 and GS3 and stored volume), the 10 corrupted data sets and the six 
regions.  
 
 
RESULTS 

Figure 2 presents the relative performance scores for the streamflow at the end of the system 
(GS3) and the stored volume (VOL) on each region. The box-plots represent the distribution of the 
scores over the ten corruption scenarios.  
 
 

 
Fig. 2 Relative performance scores RRMSE and RCRPS obtained by comparing the two uncertainty post-
processors EMP and KNN in validation mode on the six test regions (GWYD, LACH, MACQ, NAMO, 
PEEL and UBID) and for two variables (VOL, the stored volume in the reservoir and GS3, the end of 
system flow). 
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 Figure 2 calls for the following comments: 
 

(a) For the stored volumes (VOL), the two relative scores are mostly negative except in Fig. 2(f). 
As a result, the KNN did not provide a better predictive uncertainty compared to EMP for this 
variable. 

(b) For the end of system flow (GS3), the RRMSE score remains close to 0, except in Fig. 2(h) 
where it is systematically negative and Fig. 2(i) where it is systematically positive. 
Conversely, the RCRPS score is always significantly positive. As a result, the performance of 
the KNN is not similar if a deterministic or a probabilistic score is used. When a probabilistic 
score is used, the KNN performs consistently better for this variable.  

(c) Some regions (LACH, see Fig. 2(h) and NAMO, see Fig. 2(d)) present a much greater spread 
in the distribution of the relative scores than others. This suggests that the effects of the 
streamflow corruption is not identical on all regions and supports the use of a large number of 
test cases to validate the performance of an uncertainty method. 

 
 

 
Fig. 3 Time series of the stored volume in the reservoir (a) and the end of system flow (b) for the Peel 
region. The figure shows the true value (black line), the median simulation (dotted line) and the 
confidence interval [10–90%] from the uncertainty post-processor (shaded area). 

 
 
CONCLUSION 

This paper compared two methods to generate the predictive uncertainty from deterministic 
simulations produced by a water allocation model. Both methods do not require intensive 
computing, which is particularly interesting for a model of this type. The use of the empirical 
distribution of the residuals (EMP) proved surprisingly powerful compared to a more advanced 
bootstrapping method (KNN). EMP performed better than KNN when applied to the stored 
volumes. However, the predictive uncertainty was greatly improved by KNN to assess the 
uncertainty on streamflow. This highlights the important differences that can occur in the 
uncertainty analysis for a multivariate model. Further work is needed to merge the strength of both 
methods and compare them with more advanced uncertainty methods.  
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