
Risk in Water Resources Management (Proceedings of Symposium H03 held during IUGG2011  
in Melbourne, Australia, July 2011) (IAHS Publ. 347, 2011). 

  
 

Copyright © 2011 IAHS Press 
 

173

Drought analysis based on precipitation generation from GCMs 
for the Qingjiang River Basin 
 
KUNXIA YU, LIHUA XIONG, LEIHUA DONG & MIN WAN 

 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,  
Wuhan 430072, China 
xionglh@whu.edu.cn 
 
Abstract This paper aims to assess model reliability of 21 global climate models (GCMs) to reproduce 
observed historical monthly rainfall and drought, especially extreme events over Qingjiang River Basin. 
Monthly areal precipitation series were downscaled from 21 GCMs using the Statistical DownScaling Model 
(SDSM). All the downscaling rainfalls were evaluated against the 1960–1999 observed rainfall data over 
Qingjiang River Basin. The main conclusions include: (a) most downscaled rainfalls can reasonably 
reproduce the observed monthly areal rainfall series in both calibration period and validation period, 
although downscaled rainfall time series are more stationary; (b) downscaled rainfalls perform poorly when 
they come to drought, and observed drought characteristics cannot be well reproduced, but category 
simulation accuracy is generally satisfactory to some degree; (c) there is no clear difference in the ability to 
produce historical rainfall characteristics between GCMs, but the difference in the capability to simulate 
droughts and extreme events is significant. 
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INTRODUCTION 

Extreme event risk is highly topical in water resource management since it is associated with 
severe damage to social and economic development. The increasing frequency and intensity of 
extreme events have a potential link with climate change (Frich et al., 2002; Nicholls & Alexander, 
2007). A global climate model (GCM) is an advanced tool to estimate future climate change 
scenarios. Accessing model reliability is meaningful to investigate future climate change scenarios 
to predict a potential extreme event.  
 Twenty-four GCMs are available to simulate climate change scenarios in the future. In many 
studies rainfall downscaled from some GCMs for current climate is compared with the observed 
historical rainfall to access model reliability (Whitehead et al., 2006; Perkins et al., 2007; Chiew et 
al., 2009, 2010; Timbal et al., 2009). This paper assesses the relative abilities of the 21 GCMs 
used in the IPCC AR4 (IPCC, 2007) to reproduce historical observed monthly rainfall and drought, 
especially extreme events in the Qingjiang River Basin, a main branch in the middle Yangtze 
River Basin near the Three Gorges Project area. 
 Downscaling work is a prerequisite because the output of GCMs is too coarse for a 
hydrological region. Various downscaling models have been developed; one popularly used is the 
Statistical DownScaling model (SDSM) (Wilby et al., 2002; Harpham & Wilby, 2005; Khan et al., 
2006). It was used to generate downscaled precipitation in this study. The choice of predictor 
variables is critical in capturing the anthropogenic climate change signal in the GCM (Hewitson & 
Crane, 1996; Cavazos & Hewitson, 2005). Principal component analysis (PCA) of the predictor 
field is the most common technique (Zorita et al., 1995; Ghosh & Mujumdar, 2008); it was applied 
to establish a suitable set of input variables used as the inputs into SDSM.  
 Hence, there are 21 different precipitation generation results in total. All the downscaling 
rainfalls are evaluated against the 1960–1999 observed rainfall data over Qingjiang River Basin to 
assess model reliability of the 21 GCMs used in the IPCC AR4 to reproduce the observed 
historical rainfall and drought, especially extreme events over Qingjiang River Basin.  
 
 

STUDY AREA AND DATA 

The 16 700 km2 Qingjiang River Basin is located in the middle reach of Yangtze River Basin in the 
central part of China, between 29°33′–30°50′N and 108°35′–111°35′E. Qingjiang River is a mother 
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river with long history human habitation and agricultural development. The climate belongs to 
typically subtropical monsoon climate, warm and wet. The average annual temperature is 15–16°C, 
average annual relative humidity is 80–84%, and average annual precipitation and evaporation are 
1460 mm and 600–800 mm, respectively. The terrain of Qingjiang River Basin is intensely variable, 
from the western high mountains to low altitude hills to the east, as shown in Fig. 1. 
 
 

 
Fig. 1 Geographic location of Qingjiang River Basin. 

 
 
 The predictand to be downscaled is monthly precipitation. Observed rainfall data is areal 
mean precipitation over Qingjiang River Basin from 1960 to 1999. The calibration period is 1960–
1989 and the validation period is 1990–1999. Atmospheric predictor data used to calibrate 
downscaling methods come from the WCRP CMIP3 multi-model database (https://esgcet.llnl.gov). 
The 17 candidate predictors considered are relative humidity at 500 and 850 hPa, specific 
humidity at 500 and 850 hPa, surface specific humidity, mean sea level pressure, surface air 
temperature, zonal wind component at 500 and 850 hPa, zonal surface wind speed, meridional 
wind component at 500 and 850 hPa, meridional surface wind speed, omega at 500 and 850 hPa 
and geopotential heights at 500and 850 hPa.  
 
 
GCM DOWNSCALED RAINFALL RESULTS 

Twenty-one suitable sets of input variables chosen from 21 GCMs by applying PCA techniques 
were used as the inputs into SDSM to downscale precipitation over the Qingjiang River Basin. The 
rainfalls downscaled from 21 GCMs were compared with observed rainfall in various ways to 
evaluate their performance comprehensively. Locally weighted scatterplot smoothing (LOWESS) 
curves (Fig. 2) were used to explore local regularities and trends between observed and 
downscaled rainfalls; objective functions (Table 1) to compare statistics of various rainfall 
characteristics; box plots (Fig. 3) to represent downscale accuracy of monthly rainfall, and SPI 
(Fig. 4) to analyse drought characteristics.  
 LOWESS is an effective tool to explore the relation between two variables (Cleveland, 1979; 
Cleveland & Devlin, 1988). At each point in the data set a low-degree polynomial is fitted to a 
subset of the data, with explanatory variable values near the point whose response is being 
estimated. The polynomial is fitted using weighted least squares, giving more weight to points near 
the point whose response is being estimated and less weight to points further away. 
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Fig. 2 LOWESS curves of observed rainfall against downscaled rainfalls from some typical GCMs over 
the validation (1990–1999) period. 

 
Table 1 Summary statistics comparing observed rainfall characteristics with downscaled rainfalls over 
validation period (1990–1999). 
GCMs RMSE 

(mm)  
r NSE  d GCMs RMSE 

(mm)   
r NSE  d 

BCCR-BCM2.0 65.5  0.69 0.45 0.82 INM-CM3.0 61.9  0.74 0.51 0.85 
CGCM3.1(T47) 67.8  0.67 0.42 0.81 MIROC3.2-H 67.3  0.70 0.42 0.83 
CGCM3.1(T63) 69.2  0.71 0.39 0.84 MIROC3.2-M 69.5  0.64 0.39 0.78 
CNRM-CM3 63.2  0.76 0.49 0.87 MIUB 65.4  0.70 0.46 0.83 
GFDL 2.0 62.7  0.72 0.50 0.84 MPI-ECHAM5 62.7  0.73 0.50 0.84 
GFDL 2.1 63.7  0.76 0.48 0.87 MRI 66.0  0.71 0.45 0.84 
GISS-AOM 70.1  0.68 0.38 0.82 NCAR-CCSM 63.0  0.74 0.50 0.86 
GISS-EH 65.9  0.69 0.45 0.82 NCAR-PCM1 61.9  0.72 0.51 0.84 
GISS-ER 61.6  0.74 0.52 0.85 UKMO-HadCM3 65.9  0.71 0.45 0.84 
IAP1.0 65.2  0.70 0.46 0.83 UKMO-HadGEM1 66.3  0.69 0.44 0.83 
INGV 66.5  0.69 0.44 0.82 Median 65.5  0.71 0.45 0.84 
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 Figure 2 shows the relation between observed and downscaled rainfalls from some typical 
GCMs over the validation period. In the plot the robust smoothed value of LOWESS curves 
ranged from 0.01 to 1 to explore local regularities and trends between observed and simulated 
rainfall. The lighter the colour is, the closer robust smoothed value goes to 1, and more data are 
involved in one smoothed window. As shown in Fig. 2, the slope of most regression curves is less 
than 1, and the terminal of regression curves greatly deviate from the regression line, with 
downward trends for most simulations. It is illustrated that most downscaled rainfalls under-
estimate the observed, especially extreme rainfall. Only a few GCMs perform well, such as 
CNRM-CM3 and NCAR-CCSM. There is not much difference between downscaled rainfalls in 
general, but the difference in the ability to reproduce extreme rainfall between GCMs is significant. 
 Table 1 summarises the comparative statistics of various rainfall characteristics: (a) root mean 
square error (RMSE) between observed and downscaled monthly rainfalls; (b) linear correlation (r) 
of downscaled monthly rainfalls versus observed; (c) Nash-Sutcliffe efficiency (NSE) to 
characterise the agreement between the two monthly rainfall distributions; (d) index of agreement 
d to gauge downscaled rainfall performance. Index of agreement is a normalized measure of sum 
of squared errors developed to overcome the sensitivity of correlation-based statistics to 
discrepancies between the observed and modelled means and variance (Willmott, 1982).  
 Downscaled rainfalls generally have good agreement with observed rainfall and can reproduce 
the observed monthly rainfall temporal patterns, as indicated by the generally greater than 0.8 
index of agreement and 0.7 linear correlations. However, differences still exist between rainfall 
downscaled from GCMs and observed rainfall. Most of the downscaled results cannot adequately 
reproduce observed monthly rainfall distribution, as indicated by the relatively low NSE values; 
the median RMSE is 65 mm, about half of the mean monthly rainfall across the study area.  
 The GCMs can be ranked based on their abilities to reproduce the observed monthly rainfall, 
but apart from several GCMs with very low NSEs (for example, CGCM3.1 (T63), GISS-AOM, 
and MIROC3.2-M), there is no clear threshold in the distribution of RMSE, NSE, linear 
correlation and index of agreement values to separate the better and poorer GCMs (Table 1).  
 Figure 3 shows the box-whisker plots representing the downscaling accuracy of monthly mean 
rainfall over calibration period and validation period. In general, the monthly mean rainfall is well 
simulated in June and July, overestimated in August, and underestimated in other months. This figure 
also shows the uncertainty range of downscaled rainfall with respect to GCMs. It is smaller during 
the winter and spring periods than summer and autumn. Uncertainty range is less in the calibration 
period than validation period, but the ability to reproduce observed rainfall is generally comparable. 
 
 
DROUGHT SIMULATION RESULTS 

Drought causes huge losses in agriculture and damages natural ecosystems; it has received special 
attention in water resource management. The most robust and effective drought index is the 
 
 

    
Fig. 3 Observed and downscaled monthly precipitation amounts over the calibration (1960–1989) and 
the validation (1990–1999) periods. Downscaled monthly rainfall of 21GCMs is given as box plots 
giving median, upper and lower quartiles and max. and min. values.  
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Standardized Precipitation Index (SPI), which was developed by McKee et al. (1993). The SPI 
allows the determination of duration, magnitude and intensity of droughts. SPI at 12 months is 
considered a hydrological drought index, since it is used for monitoring surface water resources. In 
this research, SPI at 12 months (SPI12) is investigated to estimate the ability of downscaled 
rainfall to simulate drought. A drought event occurs any time the SPI is continuously negative and 
reaches an intensity of –1.0 or less. The event ends when the SPI becomes positive. 
 Figure 4 represents the simulation of SPI12 based on validation period. This figure shows the 
uncertainty range of SPI12 with respect to GCMs. In general, the simulation is remarkably 
dramatic. SPI12 of most downscaled rainfalls are very different from the corresponding observed 
rainfall. The uncertainty range with respect to GCMs is quite wide, but a majority of downscaled 
rainfalls belong to the Near Normal category with SPI12 value between –0.99 and +0.99 according 
to the classification scale for SPI values (Table 2) (Edward & McKee, 1997). It illustrates that 
downscaled rainfall time series are more stationary. Most downscaled results did not reproduce 
observed drought events, especially the extreme drought phenomenon in 1992 and 1993.  
 
 

 
Fig. 4 SPI12 of observed and downscaled rainfall series over the validation (1990-1999) period. SPI12 
of 21GCMs is given as box plots.  

 
 
Table 2 Classification scale for SPI values. 
SPI Values Category SPI values Category 
≥ +2.00 Extremely wet ≤–2.00 Extremely dry 
+1.50 to +1.99 Very wet –1.50 to –1.99 Severely dry 
+1.00 to +1.49 Moderately wet –1.00 to –1.49 Moderately dry 
–0.99 to +0.99 Near normal   
 
 
 

 Table 3 summarises the comparative statistics of SPI12 of downscaled rainfalls versus observed 
rainfall: Category Simulation Accuracy (CSA), linear correlation (r), Nash-Sutcliffe efficiency 
(NSE) and index of agreement (d) to evaluate the ability of downscaled rainfalls to reproduce 
observed hydrological droughts. Category simulation accuracy is the percent of downscaled rainfalls 
which are distinguished by same category with observed rainfall based on SPI12. 
 The category simulation accuracy is reasonable, as indicated by CSA mostly greater than 60%. 
However, generally lower linear correlation, Nash-Sutcliffe efficiency, and index of agreement 
values mean that most downscaled results cannot accurately reproduce observed hydrological 
droughts. The ability to reproduce hydrological droughts is comparable in the calibration period 
and validation period in general, while the uncertainty range with respect to GCMs is less in the 
calibration period. 
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Table 3 Summary statistics comparing SPI12 of observed rainfall with downscaled rainfalls over validation 
period (1990–1999). 
GCMs CSA

(%) 
r NSE d GCMs CSA

(%) 
r NSE d 

BCCR–BCM2.0 57.5  –0.19 –1.35 0.33 INM–CM3.0 62.5  0.11 –0.79 0.48 
CGCM3.1(T47) 65.0  0.32 –0.49 0.61 MIROC3.2–H 70.0  0.49 0.06 0.71 
CGCM3.1(T63) 61.7  –0.09 –1.39 0.31 MIROC3.2–M 64.2  –0.06 –1.18 0.38 
CNRM–CM3 56.7  –0.02 –1.12 0.44 MIUB 59.2  0.55 –0.25 0.70 
GFDL 2.0 75.8  0.14 –0.52 0.49 MPI–ECHAM5 62.5  0.15 –0.64 0.49 
GFDL 2.1 58.3  0.47 –0.15 0.67 MRI 60.8  –0.35 –1.64 0.20 
GISS–AOM 56.7  0.21 –0.70 0.52 NCAR–CCSM 70.8  0.08 –0.87 0.36 
GISS–EH 70.0  –0.09 –1.41 0.34 NCAR–PCM1 55.8  0.59 0.09 0.76 
GISS–ER 52.5  0.25 –0.85 0.54 UKMO–HadCM3 71.7  0.34 –0.54 0.55 
IAP1.0 60.8  0.07 –0.79 0.44 UKMO–HadGEM1 66.7  0.21 –0.78 0.53 
INGV 58.3  0.31 –0.65 0.56 Median 61.7  0.15 –0.78 0.49 
 
 
DISCUSSION AND CONCLUSIONS 

This paper assesses the relative abilities of the 21 GCMs used in the IPCC 4AR to simulate 
various 1960–1999 observed rainfall and drought characteristics, and explores how the choice of 
GCMs used in a study can influence downscaled results using data from a 16 700 km2 region over 
Qingjiang Basin. The results indicate that most downscaled rainfalls have good agreement with the 
observed rainfall, and can reproduce the observed linear mean monthly rainfall temporal pattern. 
However, the downscaled rainfall time series are more stationary than the observed. Downscaled 
rainfalls have poor ability to reproduce monthly rainfall distribution with relatively low NSEs  
and high RMSEs; most of downscaled rainfalls underestimate the observed, especially extreme 
rainfall.  
 Most downscaled results perform poorly when they come to drought. Lower linear correlation, 
Nash-Sutcliffe efficiency and index of agreement values show that observed drought 
characteristics cannot be well reproduced, but category simulation accuracy is generally 
satisfactory to some degree. 
 Although there is no clear difference in the ability to reproduce historical rainfall 
characteristics between GCMs, LOWESS plot and SPI12 show that the difference in the capability 
to simulate drought and extreme event between GCMs is significant, and the uncertainty range 
with respect to GCMs is quite wide.  
 In summary, most downscaled rainfalls can reasonably reproduce observed monthly areal 
rainfall series in both calibration period and validation period, but a majority of downscaled 
rainfalls perform poorly when they come to droughts and extreme rainfalls. A further research task 
will be to improve the simulation accuracy of drought and extreme event to reduce risk in water 
resource management.  
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