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Abstract The Robust Optimization (RO) methodology (Ben-Tal et al., 2009) is applied to optimize the 
operation of a water supply system (WSS) which supplies water from aquifers with uncertain recharge and 
desalination plants through a network to consumers. The objective is to minimize the total cost of multiyear 
operation, while satisfying operational and physical constraints. The RO methodology optimizes the 
uncertain problem by requesting that the uncertain parameters reside within a user-defined uncertainty set. 
The static (“here and now”) version of RO is called Robust Counterpart (RC), in which the original problem 
is converted into a deterministic equivalent problem. A generic RC model for optimal operation of a WSS is 
developed and demonstrated. The policies obtained by the RO methodology, each requiring a different 
reliability, are compared with other decision making approaches.   
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INTRODUCTION 

Optimal management of Water Supply Systems (WSS) has been studied extensively and resulted 
in a large number of optimization models and techniques. The parameters of early models were 
assumed perfectly known, leading to deterministic models. The results obtained by such models 
usually perform poorly when implemented in the real world, when the problem parameters are 
revealed and are different from those assumed in the deterministic model. A variety of stochastic 
methodologies have subsequently been developed, including stochastic dynamic programming 
(Faber & Stedinger, 2001), implicit stochastic optimization (Lund & Ferreira, 1996), scenario-
based optimization (Kracman et al., 2006) and chance constraints (Lansey et al., 1989). However, 
in these methodologies the uncertain data are assumed to have perfectly known Probability 
Density Function (PDF), which is not always the case in reality. 
 This paper considers the Robust Counterpart (RC) approach (Ben-Tal et al., 2009), a novel 
methodology for optimization under uncertainty, in which the uncertainty is not described by a 
PDF. It is viewed as deterministic but known to reside within a defined uncertainty set. Hence, 
instead of immunizing the solution in a probabilistic sense, the decision maker searches for a 
solution that is optimal for all possible realizations within a defined uncertainty set. The RC 
approach has been applied to a variety of optimization problems (see Ben-Tal et al., 2009) such as 
portfolio models, inventory theory, process scheduling and network models. 
 
 

THE ROBUST COUNTERPART (RC) APPROACH 
The RC approach is a min–max oriented methodology (Ben-Tal et al., 2009) that seeks robust 
feasible/optimal “here and now” decisions which are determined at the beginning of the time 
horizon, before the uncertain data are revealed. This version of the RC approach is termed “static 
problem”. Robust feasible decisions treat the uncertain constraints as hard constraints which have 
to be satisfied for all the realizations within the given uncertainty set, while robust optimal means 
optimizing the guaranteed value (for minimization it is the largest value) of the objective function 
over the uncertainty set. 
 To illustrate the method, consider the following LP subject to data uncertainty: (we assume 
without any loss of generality, that the data uncertainty affects only the elements of the left hand 
side matrix coefficients, since the objective function can be transformed to a constraint and if the 
right hand side (RHS) is uncertain then we can introduce new variables with a fixed value of 1): 

{ }1 1 2 2min : 0,T T T
i ix

c x a x a x i+ ≤ ∀  (1) 
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where 1ia is vector of certain parameters and 2ia  is vector of uncertain parameters. 

The RC of problem (1) is:  

{ }1 1 2 2 2min : 0, ,T T T
i i i ix

c x a x a x i a U+ ≤ ∀ ∀ ∈  (2) 

iU is a user-defined uncertainty set. Worst case oriented methodologies can lead to overly 
conservative solutions such as Soyster’s (1973) approach which considers interval uncertainties in 
LP, where every uncertain parameter takes is at its worst value in the uncertainty set. To address 
over-conservativeness the RC methodology introduces ellipsoidal uncertainty sets to reflect the 
fact that the coefficients of the constraints are not expected to be simultaneously at their worst 
values. The ellipsoidal uncertainty set is defined as affine mapping of a ball of radiusθ :  

{ }2 2ˆ: ,i i iU a a ς ς θ= + Δ ≤  (3) 

where 2ˆia is the nominal value, Δ is a mapping matrix, and the parameter θ  is a subjective value 
chosen by the decision maker to reflect his attitude towards risk. Ben-Tal et al. (2009) show that 
the RC of this LP is:  

{ } ( )1 1 2 2 2 2 1 1 2 2 2

1 1 2 2 2

ˆˆ0 , max a 0

ˆ 0

TT T T T
i i i i i i

T T T
i i

a x a x a a a x x x

a x a x x

ς θ
ς ς θ ς

θ

≤
⎡ ⎤+ ≤ ∀ ∈ + Δ ≤ ⇔ + + Δ ≤⎣ ⎦

⇔
+ + Δ ≤

 (4) 

which is a convex tractable optimization problem that can be solved by polynomial time interior 
point algorithms. A special case is when the only uncertainty is on the RHS; in this case we obtain 
a linear RC of the form: 

1 1 2 2ˆ 0T T
i ia x a x θ+ + Δ ≤  (5)    

The RC solution immunizes the resulting optimal decision against deviations from the nominal 
value, as long as they remain within the set { }Ballθ ς θ= ≤ which is prescribed by selection of θ . 
Points that lie outside this domain are supposed to have very low probability, as they represent 
simultaneous extreme values of all uncertain variables. 
 
 
RC MANAGEMENT MODEL OF WATER SUPPLY SYSTEMS (WSS) 

WSS management models vary according to the time horizon covered and time steps, the level of 
spatial detail, and the physical laws (e.g. hydraulics) that are included. Models range from highly 
aggregate versions of an entire water system to much more detailed models in space and time 
(Shamir, 1971). Management models of a large-scale water supply system for seasonal to annual 
to multi-year operation can be captured in a model of medium aggregation (Fisher et al., 2002; 
Draper et al., 2003, 2004; Jenkins et al., 2004; Watkins et al., 2004; Zaide, 2006). 
 
 

 
Fig. 1 Water supply system. 
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 In the present paper we consider an optimization model with a medium aggregation level 
(Fig. 1): water is taken from sources, which include aquifers, reservoirs and desalination plants, 
and conveyed through a conveyance system to consumers who require certain quantities of water. 
The time horizon covers several years, with an annual time step. The operation is subject to 
constraints on water levels in the aquifers, annual carrying capacities of the conveyance pipes and 
production capacities of the desalination plants. The objective is to operate the system with 
minimum total cost of desalination and conveyance, plus a penalty/reward related to the final state 
of the aquifers at the end of the planning horizon, to represent sustainability. The annual 
replenishment series into the aquifers are uncertain, while the desalination plants are certain but 
more expensive than extracted groundwater.  
 
Objective function 
The objective is to operate the system with minimum total cost over the operation horizon fT  
years. The objective is: 

, , , , ,
1 1

Desalination Conveyance Penalty/Reward

ˆ[ ] [( ) ] min
f f

f

T a

d t d t l t l t a a T a
t d l a

des Q C Q h h E
= =

⋅ + ⋅ + − ⋅ →∑ ∑ ∑ ∑
1442443 14243 144424443

 (6) 

Water quantities are in ( MCM/year ), elevations in ( m ), and costs in ( M$/MCM ); a, d, l and t 
denote aquifer, desalination, link and year, respectively, desd,t is the cost of desalinated water, Qd,t 
is the annual quantity of water desalinated, Cl,t is the unit cost of transportation and Ql,t the annual 
transport in the link, ha,t is the water level in the aquifer at the end of year t, ˆ

ah  the desired final 
water level, and Ea is the penalty per metre of deviation from this level (M$/m).  
 
Network continuity constraints 
The following linear equation system insures water balance in the network nodes:  

t tG Q S⋅ =   (7) 
where G is the graph matrix of the network; , , ,[ , , ]T

t natural t desalination t links tQ Q Q Q= ; ,[0, ]T
t demand tS Q= ; 

,natural tQ  is the vector of elements ,a tQ a∀ ; ,desalination tQ  is the vector combining the elements ,d tQ d∀ ; 

,links tQ  is the vector combining the elements ,l tQ l∀ ; ,demand tQ  is the vector combining the elements 

,z tQ z∀ where ,z tQ denotes demand in year t in demand zone z .  
 
Hydrological constraints in the aquifers 
The hydrological water balance insures that the change in aquifer storage equals the difference 
between the recharge and withdrawal during the year: 

, ,0 , ,
1 1

/
t t

a t a a i a i a
i i

h h R Q SA
= =

⎛ ⎞= + −⎜ ⎟
⎝ ⎠
∑ ∑  (8) 

where a,t denote aquifer and year; Qa,t is the extraction amount; Ra,t is the (uncertain) recharge; SAa 
(MCM/m) is the storativity multiplied by area. 
 
Operation bounds 
Bounds on water levels in the aquifer reflect both policy and physical/operational limits; bounds 
on links discharge, represent limited conveyance capacity and fixed direction flow; bounds on 
aquifers water extraction which represent hydrological and hydraulic considerations and fixed 
direction flow; bounds on desalinated water, represent plants capacity contract condition or fixed 
direction flow. 

min max max
, , , , ,

max min max
, , , , ,

; 0
0 ;

a t a t a t l t l t

a t a t d t d t d t

h h h Q Q
Q Q Q Q Q
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
 (9) 

where ( )min is minimum allowed value; ( )max is maximum allowed value. 
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Construction of the uncertainty set 

The resulting mathematical model is LP with uncertainty is in the recharge ,a tR a t∀ ∀  represented in 
the uncertain column vector 1.. , 1 1.. ,[ , , ]

f f f

T
a a t a a t TR R R= = = == L . The uncertainty set construction relies 

only on a given estimated average and covariance matrix of the recharge vector, without the need for 
further stochastic information. To construct an ellipsoidal uncertainty set for the recharge we assume 
that the annual recharge values are independent random variables, where the yearly recharge vector 
of the aquifers is 1.. , ''

fa a tR R == in each year 't  is correlated with covariance matrix 'R
Σ and expecta-

tion vector 'R
μ , indicating positive correlation between the recharge of different aquifers. Each row 

in 'R
Σ and 'R

μ corresponds to an aquifer 1.. fa a= . The annual recharges are assumed independent 
from year to year so the recharge data are repeated for the entire horizon. Hence, the expectation vec-
tor of the overall recharge is ' '[ ,..., ]T

R R R
μ μ μ= and covariance matrix RΣ  is a diagonal block matrix 

with main diagonal elements 'R
Σ . Consider the linear transformation of the stochastic vector R : 

RR μ ξ= + Δ ⋅  (10) 
which implies R R ξμ μ μ= + Δ ⋅ and T

R ξΣ = Δ ⋅Σ ⋅Δ then if we set 0ξμ = and IξΣ =  and we have to 
maintain the covariance of R  we need to imply T

RΣ = Δ⋅Δ . By replacing the stochastic vector 
ξ with the perturbation vector ς  that varies in the perturbation set { }Ballθ ς θ= ≤ , we obtain the 

ellipsoidal uncertainty set U of the uncertain vector R as { }: ,RU R μ ς ς θ= + Δ ≤ . For more details 
which justifies replacing ξ  by ς , we refer the reader to Ben-Tal et al. (2009). 
 The parameter θ  determines the range of values of the uncertain R against which the optimal 
policy is immunized, i.e. remains feasible. A large value means immunization against more 
extreme values of R. θ  = 0 implies that only the expected value of R is taken into consideration, 
and any deviation of its actual value from the expectation could results in constraint violation. The 
matrix 0.5

RΔ = Σ  can be obtained by Cholesky decomposition. Each row in Δ  corresponds to year t  
and aquifer a  and implies ,a t aσ = Δ , where aσ  is the standard deviation of recharge in aquifer a  
which remains constant over the years. 
 The RC model is constructed by extracting the state variable ha,t from the uncertain equation 
(8) and creating the robust version of the constraints. The resulting RC is LP, since no decision 
variables appear in the norms, and the uncertainty appears only on the RHS.  

, 1 1
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1 1 1
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 (11) 

where 1.. 1..[ , , ]
f f

T
a a a av E E= == L ; 1.. 1..([ , , ])

f fSA a a a aD SA SA= == diag L . 

 
 

APPLICATION 

A small hypothetical water supply system (Fig. 1) is used for demonstration. The system is fed 
from two aquifers and a desalination plant to supply two customers over a 10-year horizon, for 
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which a minimum total operation cost is sought. The annual costs of transportation in the links are 
{0.1, 0.05} (M$/MCM) for odd and even links, respectively, and the desalination cost is 1 
(M$/MCM). The same costs hold for later years 2.. ft T=  and are capitalized to the present value 
with a 5% discount rate. The depletion penalty at the final stage is 0.3 ( M$/m ) for being below the 
prescribed value. Both aquifers have identical properties: SA = 0.8 (MCM/m), 0 75h = ( m ), 
ˆ 30h = (m), min 0h = (m) and max 500h =  (m) (an arbitrary high value, to insure no spill and thus 

simplify the demonstration). All water quantities have the same bounds: 0–100 (MCM/year). The 
annual recharges are i.i.d. with a joint uniform discrete distribution {30, 40, 50} for aquifer 1 and 
{35, 40, 60} for aquifer 2, that remains the same for all 10 years. This distribution have mean 
vector {40, 48.33} ( MCM/year ) and covariance matrix 'RV and uncertainty set U : 

( )'
66.67 83.33
83.33 105.56R

V = , ( ) ( ){ }1

2

40 8.17 0' : ,48.33 10.21 1.18U R ς ς θς
⎛ ⎞= + ≤⎜ ⎟
⎝ ⎠

 (12) 

The annual demand in the first year is 80 (MCM/year) in each demand zone, and it increases by 
5% in each subsequent year. The cost of deficit in supply to the customers is 3 (M$/MCM). 
 
RC solution and simulation results 

We compare five management policies: three Robust Policies (RP1, RP2 and RP3) which are 
obtained from the RC model with different values of {1, 2,3}θ = , a Nominal Policy (NP, θ  = 0) 
which is essentially a deterministic solution with the average recharge, and a Conservative Policy 
(CP) which is obtained with the worst case realization, namely minimum recharge in all years. 
Each of these policies determines “here and now” decisions which are implemented at the 
beginning of the planning horizon before the uncertainty is revealed.  
 Figure 2 compares the annual amount of desalinated water in each of these polices. The CP 
results in constant desalination of 120 (MCM/year), which is the full capacity of the desalination 
plant. The NP results in taking as much as possible from the aquifers in the first stages while 
recognizing that the demand is increasing beyond the desalination capacity, which leads to storing 
aquifer water to close the gap between the demand and the supply capacity at later stages. The 
conservativeness of the CP over all other policies is apparent. The robust polices RP1, RP2 and 
RP3 require less desalinated water than the CP, indicating that these policies are not myopic; in 
other words, they take advantage of the variability of recharge over time. Compared to the NP a 
robust policy takes more desalinated water in the first stages, resulting in higher water level in the 
aquifers, which insures manoeuvrability of the aquifer within its operational limits in later years. 
The degree of conservativeness of the robust policies is noticeable: an RP with smaller θ  results in 
less desalination but lower reliability/immunization and higher penalties, where NP (which is RP 
with 0θ = ) is the lower bound. 
 The performance of each policy is examined by simulation, which shows the trade-off 
between the amount of desalination and reliability: lower desalination result in lower reliability. 
The simulation is run 1000 times with random samples, each with afTf = 20 recharge values drawn 
from the discrete distribution of the recharge. The results for NP and RP3 are shown in Figs 3 and 
4: the final water levels in the two aquifers, the total cost and the penalized cost. The feasibility of 
policies RP1, RP2, RP3 and NP is obviously not guaranteed for all possible realizations of the 
recharge sequence, as seen by some excursions of the level to negative values, even in RP3, which 
covers the largest uncertainty set. However, as seen in Fig. 4 for RP3 these are very few; they are 
fewer as θ  increases. In CP there are obviously no infeasibilities, as it considers the worst case, 
namely the lowest value of the recharge.  
 Since some of the generated samples can result in the reservoirs/aquifers becoming empty in 
some year it is necessary to take this into consideration in two respects: (a) continuing the path of 
the reservoir/aquifer beyond this point, and (b) penalizing the policy for failing to meet the 
specified operational limits. The two aspects are handled as follows: when the reservoir goes dry it 
is set to empty as the initial state for the next year:  
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Fig. 2 Annual desalination amounts for the five policies. 

 
 

 
Fig. 3 Simulation results for NP. 

 
 

 
Fig. 4 Simulation results for RP3. 
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( )min
, 1 , , , 1 , 1max( , ) /a t a t a t a t a t ah h h R Q SA a t+ + += + − ∀ ∀  (13) 

and a penalty term is added: 
min
, ,max( ,0) / a ta t a t t ah h DC SA− ⋅ ∀ ∀  (14) 

where DCt is the deficit cost, which can reflect demand shortage cost or yield loss. This is used 
only in evaluating the optimal solution by simulation and does not appear in the optimization 
models. The Penalized Cost (PenC) which is the operation cost plus the sum of penalties over the 
10 years for all simulations appears in Figs 3 and 4. 
 The NP results in almost 50% of the samples deviating from the limits in both aquifers at the 
final stage, while in RP3 there are only four deviations over all simulations. Almost 10% of the 
samples in the NP exceed the worst cost of RP3. Moreover, a very large difference in the cost 
variability is exposed. 
 Table 1 reports the empirical maximum, minimum, average and standard deviation of the total 
cost and PenC for each policy, along with the reliability defined as the fraction of simulations 
which maintain feasibility in both aquifers in all years. The constant value of the cost standard 
deviation in Table 1 indicates that all policies were run on the same sample of the recharge. 
 
 
Table 1 Simulation results. 

Cost (M$) PenC (M$) Policy 
min max mean  std min max mean  std 

Reliability 
% 

NP 916.60 1060.98 984.54 21.27 916.60 1778.32 1074.89 143.71 48.6 
RP1 948.43 1092.81 1016.38 21.27 948.43 1613.35 1035.52 74.01 81.4 
RP2 983.28 1127.66 1051.22 21.27 983.28 1451.40 1053.66 34.07 97.7 
RP3 1021.09 1165.46 1089.03 21.27 1021.09 1289.22 1089.22 22.29 99.7 
CP 1101.62 1246.00 1169.56 21.27 1101.62 1246.00 1169.56 21.27 100 
 
 
 The cost of the NP ranges between 916 and 1061 M$ while the cost of RP3 ranges between 
1021 and 1166 M$. The NP yields infeasibilities in 51.4% of the samples while RP3 has only 
0.3% infeasibilities. Accounting for the cost of infeasibility shows clear preference of RP3 over 
NP. RP3 immunizes the NP from a reliability of 48.6–99.7% with only 10.6% increase in the mean 
cost. RP3 immunizes the NP with price of robustness (mean cost increment) of 2.05 M$ for each 
1% reliability, while the CP immunize it with price of robustness of 3.6 M$ for each 1% 
reliability. Comparing CP with RP3 shows clear preference of RP3 since the CP immunizes RP3 
by getting rid of the last remaining 0.3% unreliability with an associated cost of 80.5 M$, or 268 
M$ for each 1% reliability.  
 Selecting the size of the uncertainty set against which the resulting policy is immunized (i.e. 
setting the value ofθ ) is clearly a multi-objective decision, but some clear choices can be revealed 
in this example. Figure 5 shows the trade-off between reliability and mean cost, for all policies. 
The trade-off is characterized by a mild slope of the last segment connecting RP3 with CP, which 
indicates that a large increment in the mean cost is needed in order to obtain a small increment in 
reliability. The question to be asked is whether it is justified to add this large cost to immunize 
against rare events of the recharge. The CP does not violate any constraint over all realizations of 
the recharge; hence the cost and Penalized Cost are identical. In Table 1 the mean PenC of RP3 is 
80.34 M$ less than the mean cost of CP; in contrast the CP maximum cost is 43.22 M$ less than 
the maximum PenC of RP3. However, further analysis of the cost distribution shows that only one 
sample in RP3 would exceed the worst cost of the CP (1246 M$) while 695 samples in RP3 are 
below the best cost of the CP (1101.6 M$). This result shows that implementation of the CP would 
increase the mean cost by 80.34 M$ while the only gain is reduction of 43.22 M$ in the cost's 
upper bound, which is rarely realized. Policies RP2 and RP3 are indeed robust, their standard 
deviations of the PenC are less by a factor of 4.2–6.4 than the NP standard deviation, indicating 
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that these robust policies lead to stable policies without large variability in the associated costs; 
this can be viewed as preference over other alternatives. 
 
 

 
Fig. 5 Trade-off between mean cost and reliability.  

 
 

CONCLUSION 

These results demonstrate the advantage of being able to replace the stochastic behaviour of the 
uncertainty by specifying a user-defined set within which the resulting policies are immunized, as 
well as being able to show the trade-off between reliability and mean expected cost. 
 We have also applied the methodology and its dynamic variant Folding RC (FRC) to the small 
WSS as a test-bed, and to a central part of the Israeli National Water System, which has three 
aquifers, three desalination plants, nine consumer zones, and 14 network nodes. The results are 
very competitive with those obtained by stochastic and deterministic (CP and NP) methods. We 
continue to develop and test a variety of RO-based methodologies, including Adjustable Robust 
Counterpart (ARC) and Affine Adjustable Robust Counterpart (AARC) (Ben-Tal et al., 2009).   
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