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Abstract The consequences of climate change for water quality are significant and are expected to heavily 
influence water resources management. Here, water quality modelling was done in order to evaluate the 
impact of climate change on nitrogen loads in the Jizera catchment. The Jizera catchment is of high 
importance for drinking water supply. We have used the eco-hydrological model SWIM (Soil and Water 
Integrated Model), which simulates water and nutrient fluxes in soil and vegetation, as well as transport of 
water and nutrients to and within the river network. The influence of climate change on nitrogen loads in the 
Jizera catchment was assessed here by using bias-corrected outputs of two dynamic regional climate models 
(RCMs). The two RCMs show a common trend of higher future total and summer discharge. However, the 
SWIM modelling results differ in terms of nitrate nitrogen load and its seasonality, between the two RCMs 
and among the modelled future periods. The uncertainty in the modelling results is caused mainly by 
differences in the regional climate models. 
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INTRODUCTION 

Water quality models can provide valuable support for the assessment and the analysis of pollution 
loads in river basins, as well as information about potential future changes in water quality under 
climate change while using the outputs of climate change models. Water quality models are very 
diverse, from statistical and conceptual models on one hand to process-based and physically-based 
models on the other. Regional climate models (RCMs) forced by global climate models (GCMs) 
are usually used for assessment of the climate change impact on water quality in meso-scale 
basins.  
 Many sources of uncertainty exist when modelling the climate change impact on water quality 
(e.g. input data, parameters of model, model structure, and the GCM, RCM and emission scenarios 
used). One of the possible ways of dealing with uncertainty is to focus on one of its sources at the 
time. In our study, we have used the eco-hydrological process-based model SWIM (Soil and Water 
Integrated Model) for assessment of the climate change impact on nitrogen loads. SWIM has 
already been successfully implemented for various types of catchments from meso-scale to macro-
scale, but mainly for lowland meso-scale catchments (Hattermann et al., 2006; Hesse et al., 2008) 
and macro-scale basins (Huang et al., 2009). We have already applied the SWIM model in order to 
analyse pollution loads and to assess the potential climate change impact on water quality in the 
meso-scale catchment of the Jizera River in the Czech Republic, Europe (Martínková et al., 2011). 
 In this particular study, we focused on comparison of two RCMs forced by the same GCM, 
with the same localisation of grid points and processed with the same bias-correction method. The 
aim was to evaluate the uncertainty in modelling of climate-change impact on nitrogen loads 
originated in differences between the RCMs. We used the REMO and RACMO RCMs from the 
ENSEMBLES data set (http://ensemblesrt3.dmi.dk/).   
 
 
DATA AND METHODS  

The Jizera catchment (2180 km2) is a part of the Elbe Basin and is located in the Czech Republic. 
The River Jizera is 185 km long and drains into the River Elbe. Altitude of the catchment varies 
between 168 and 1434 m a.s.l. Both point sources and diffuse sources of nitrogen are important. 



Marta Martínková et al. 
 

160 

To set-up the model for the Jizera catchment, four raster maps characterizing the study area: a 
digital elevation model, a soil map, a land-use map and a sub-catchment map (203 sub-catchments), 
were used. All maps had the same resolution of 100 × 100 m. Climate data (maximum, mean and 
minimum temperature, precipitation, solar radiation and air humidity) were interpolated to the 
centroids of every sub-catchment by the inverse distance method using 10 climate stations in and 
around the Jizera catchment. Locations of the climate stations are given in Fig. 1.  
 

 
Fig. 1 Map showing the Jizera catchment and location of climate stations and grid points.  

 
 The Czech Hydrometeorological Institute provided the daily discharge data and monthly 
measurements of nitrate nitrogen at the outlet of the catchment for model calibration. We used the 
linear interpolation method for calculating the daily nitrogen load at the catchment outlet. We 
implemented the data on location and output of point sources (144 sewage treatment plants) in the 
SWIM model. These data were added to the daily nutrient amount of the corresponding sub-
basins. Fertilization data typical for the catchment were also used in the model (Martínková et al., 
2011).  
 
Regional climate models 

Here we used the ENSEMBLES data set (http://ensemblesrt3.dmi.dk/), and specifically the outputs 
of the REMO and RACMO transient experiments 1951–2100 for emission scenario A1B, driven 
by global climate model ECHAM5-r3 with a horizontal resolution of 25 × 25 km. REMO 
(REgional MOdel) was developed in the Max-Planck Institute for Meteorology in Hamburg, 
Germany (Jacob, 2001). RACMO was developed mainly at the Royal Netherlands Meteorological 
Institute (Meijgaard et al., 2008). 
 The dynamical RCMs in general tend to produce systematic biases (Frei et al., 2003; 
Christensen et al., 2008). These systematic differences between the observed and simulated data 
can be corrected by using a bias correction method. Here we used the non-linear correction 
approach proposed by Leander & Buishand (2007) for adjusting the used RCMs outputs 
(precipitation, temperature and humidity). The method is based on a general change factor 
methodology that represents the change from the reference period to the future scenario. 
Precipitation (P), temperature (T) and humidity (H) were transformed as follows: 

b
SIMFCORF aPP =    (1) 

SIMFSIMFSIMFCORF TTTbaT +−+= )(   (2) 
 b

SIMFCORF HaH )1(1 −−=   (3) 
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Index CORF denotes a corrected value for the future period, index SIMF denotes a simulated value for 
future period and SIMFT denotes average in the equations (1), (2) and (3). The equations depend on 
two parameters, a and b. The parameters for each day are estimated using the mean and coefficient 
of variation. The value of parameter b was optimized first for precipitation (equation (4)) and for 
humidity (equation (5)):  

)()( b
SIMROBSR PcvPcv =  (4) 

])1[()1( b
SIMROBSR HcvHcv −=−  (5) 

In equations (4) and (5), cv denotes the coefficient of variation. 
 The value of parameter a was calculated using equation (6) in the case of precipitation and 
after equation (7) in the case of humidity: 

b
SIRMROBSR PPa /=  (6) 

b
SIMROBSR HHa )1(/1( −−=  (7) 

For temperature, the parameter a was derived directly from difference between the means of 
temperatures after equation (8) and parameter b from the ratio of temperatures’ standard deviations 
(sd) using equation (9): 

SIMROBSR TTa −=  (8) 

)(/)( SIMROBSR TsdTsdb =  (9) 

Index OBSR denotes observed value for reference period while index SIMR denotes simulated value for 
reference in the equations (6), (7), (8) and (9). The transformation parameters a and b for all the 
values were derived for every day of the year from a time window of 30 days before and 30 days 
after, from all years of a given period (Leander & Buishand, 2007). Data for each of the climate 
stations (Fig. 1) was processed individually to be later used as input data for modelling with the 
SWIM eco-hydrological model; data of RCMs nearest grid points were interpolated to the station 
locations by using the inverse distance method. The bias correction was processed for three 30-
year periods: 2011–2040, 2041–2070 and 2071–2100 while the reference period was 1972–2001. 
After the bias correction the three 10-years periods (2031–2040, 2061–2070 and 2091–2100) were 
used for SWIM modelling. 
 
 
RESULTS AND DISCUSSION 

Calibration and validation of nitrogen 

The calibration and validation of discharge and nitrate nitrogen loads was already successful in a 
previous study (Martínková et al., 2011). In that study, strong seasonality of discharge and nitrate 
nitrogen load was observed. The highest monthly mean discharge was observed during April  
(28 m3 s-1) and the lowest from August to October (around 6 m3 s-1), while the highest monthly 
mean nitrate nitrogen loads was observed during winter (12 000 kg in March) and the lowest 
during summer (2000 kg in August). 
 
Outputs of RCMs 

Here, we estimated differences between the REMO and RACMO RCMs regarding the relative 
changes of discharge, nitrate nitrogen loads and concentrations between the RCM-modelled future 
periods and the reference period 1992–2001 in total, for the summer months (April–September) 
and for the winter months (October–March). All these values are expected to change significantly 
(Andersen et al., 2006). The results are summarized in Table 1 and Fig. 2. 
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Table 1 Percentage change in mean water discharge (Q), nitrate nitrogen loads (NO3-N load) and 
concentrations (NO3-N conc.).  
  Q NO3-NN-NO3 load NO3-N conc. 
  REMO RACMO REMO RACMO REMO RACMO 

Total 8.7% –0.6% –13.3% –5.6% –23.5% 0.3% 
Summer 16.1% 10.7% 11.3% 7.9% –4.1% 4.2% 

2031–2040 

Winter 0.7% –8.6% –8.1% –11.8% –2.2% –2.4% 
Total 22.9% 40.4% -3.6% 5.6% –31.2% –23.9% 

Summer 33.4% 61.0% 13.2% 17.9% –26.6% –22.4% 
2061–2070 

Winter 13.4% 25.9% –13.9% –0.1% –34.5% –25.0% 
Total 8.7% 27.6% –13.3% 1.9% –23.5% –20.8% 

Summer –20.3% 20.0% –42.1% 0.2% 4.8% –9.0% 
2091–2100 

Winter 21.9% 32.9% –3.6% 2.6% 2.1% –29.0% 

 

 
Fig. 2 Diagram showing the comparison of percentage change of discharge (Q), nitrate nitrogen loads 
(load) and concentration (conc) between the future periods and the reference period.  

 
 The results show that the RCMs differ between each other in predictions of discharge, nitrate 
nitrogen loads and concentration.  
 
Changes in discharge and nitrate nitrogen concentrations 

Discharge as predicted by RCMs is higher for periods 2061–2070 and 2091–2100, while RCM 
REMO predicts lower discharge than RCM RACMO. In contrast, discharge for period 2031–2040 
are predicted to be higher by RCM REMO and insignificantly lower by RCM RACMO. Discharge 
predicted by RCMs is higher during summer than winter, only the RCM REMO predicted lower 
discharge during summer for period 2091–2100. The discharge during winter is higher only for the 
period 2031–2040; RCM REMO predicts discharge to remain the same and RCM RACMO 
predicts an 8.6% lower discharge. 
 The concentrations generally depend on discharge: higher discharge is associated with lower 
concentration and vice versa (Table 1 and Fig. 2). The only exception is concentration during 
summer for the period 2031–2041, as modelled by RCM RACMO. This high concentration may 
be caused by a combination of high temperatures and high evaporation coupled with extreme 
precipitation and consequent higher leaching of nitrogen. 
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Changes in nitrate nitrogen loads 

The changes in nitrate nitrogen loads are more complex and depend not only on discharges, but 
also on the seasonal dynamics of nitrogen. The changes in nitrate nitrogen loads in total, as 
projected by RCM REMO, are inversely proportional to discharge for all the modelled future 
periods of 2031–2040 and 2091–2100. Higher discharge during winter results in a lower load. The 
nitrogen loads in total as projected by RCM RACMO are lower for period 2031–2040, which is 
caused by low discharge during the winters of this period. The loads are higher for periods 2061–
2070 and 2091–2100 because of high discharge during summer. Both the RCMs predict higher 
nitrogen loads during the summers of the periods of 2031–2040 and 2061–2070 than for those of 
the reference period in connection with high discharge and possibly more intensive leaching of 
nitrate during the episodes of high precipitation. Nevertheless, the RCM REMO predicts lower 
summer nitrate nitrogen loads for the period of 2091–2100 than for the reference period, and the 
RCM RACMO predicts almost unchanged nitrate nitrogen loads despite the high discharge  
(Fig. 2). The effect of more intensive nitrogen leaching is probably not significant because of a 
low occurrence of intensive rains or other factors that influence the transport of nitrogen to the 
river in this period. Consequently, the nitrate nitrogen loads are supposed to predominantly 
originate from relatively stable pollution sources (e.g. point sources). 
 Interestingly, the two RCMs predict similar winter nitrate-nitrogen loads for the period of 
2031–2040 while they differ significantly in the predicted winter nitrate-nitrogen loads for the 
periods of 2061–2070 and 2091–2100 (see Fig. 2). RCM REMO predicts lower nitrate-nitrogen 
loads during the winters of all the future periods than during the winters of the reference period, 
despite the changes in discharge, which is caused by absence of nitrogen sources that are active 
during summer. The RCM RACMO predicts lower nitrate nitrogen loads during the winters of the 
period 2031–2040 and slightly higher loads for the periods 2061–2070 and 2091–2100. The 
uncertainty in modelling results is caused mainly by differences in RCMs. Other sources of 
uncertainty (the bias correction method used, structure of hydrological model, changes in nitrogen 
sources and sinks) were not studied here, but may be significant. 
 
 
CONCLUSIONS 

In the present study we evaluated climate change impacts on nitrate nitrogen load in river water. 
We focused on the comparison of two dynamical RCMs outputs: REMO and RACMO of 
ENSEMBLES data set. We used the SWIM model for the modelling of discharge, nitrate nitrogen 
loads and concentrations. The SWIM results highlight the large uncertainty while using RCMs for 
modelling of water quality in catchments. These two RCMs show a common trend of both higher 
total discharge and higher summer discharge in the future. However, the SWIM modelling results 
from the two RCMs differ in modelled nitrate nitrogen loads with respect to seasonality and 
among the modelled future periods. The uncertainty in modelling results is caused mainly by 
differences in the regional climate models.  
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