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Abstract Distributed models have long been viewed as beneficial for 
hydrological forecasting. However, errors in the precipitation data and model 
parameters may diminish any gains in prediction accuracy realized by 
accounting for the spatial variations in precipitation and parameters. Central to 
these considerations is the resolution of the issue of balancing model 
complexity with parameter and input estimation uncertainty. The present 
paper exemplifies a probabilistic methodology to address this issue. A distrib
uted model with components used in the operational forecasting of streamflow 
in the USA is utilized to produce flow simulations for a catchment in the 
south-central USA. Models of uncertainty for radar-rainfall data and model 
parameters are developed. Ensemble flow simulations are produced for a 
number of input and parameter uncertainty scenarios and for a high and low 
spatial resolution model configuration. Kolmogorov-Smirnov testing is then 
performed to assess whether the peak-flow simulations of the low- and high-
resolution models can be distinguished with high confidence. Assessments of 
the implications regarding performance under operational forecast conditions 
are given. 
Key words distributed hydrological modelling; ensemble flow prediction; 
parameter estimation; radar rainfall uncertainty 

INTRODUCTION 

The research question this paper addresses is: are ensemble flood flow simulations 
from models with (a) spatially aggregate parameters and (b) spatially distributed 
parameters distinguishable on scales of the order of 10 J km 2 under present-day 
operational parametric and radar-rainfall uncertainty? Consideration of flow 
simulations from models is a necessary first step prior to the consideration of lumped 
and distributed hydrological model operational forecasts that incorporate substantial 
precipitation forecast uncertainty. Premises of the analysis are: 
(a) parametric and radar-rainfall uncertainties are significant under operational 

conditions; 
(b) ensemble flow simulation provides a more complete and useful representation of 

model response than a single nominal simulation; 
(c) the runoff generation component is the same for lumped and distributed models; 
(d) the scale of order 103 km 2 is significant for operational flow forecasting. 
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The focus of the paper is to exemplify the approach used to answer the research 
question. This approach is applicable to any type of distributed hydrological model. In 
the examples to follow, we use the Sacramento soil moisture accounting model for 
runoff generation in soil columns for the distributed model and the lumped model, and 
a kinematic channel routing component for streamflow simulation and time distribu
tion of generated runoff. The distributed model used is a sub-catchment based (rather 
than grid based) model with spatially distributed parameters and input. The distributed 
model formulation, validation and sensitivity analyses with a variety of data sets from 
various basins in the USA are described in Carpenter et al. (2001) and Carpenter & 
Georgakakos (2002). 

METHODOLOGY 

The target of the methodology is to distinguish the lumped from the distributed model 
simulations when these simulations are in the form of ensembles that incorporate the 
uncertainty due to erroneous model parameter values and noisy radar rainfall input. 

The methodology consists of the following consecutive steps: 
(a) Using long historical records, calibrate lumped and distributed models for the 

basin of interest. 
(b) Develop generic models of uncertainty for parameters based on attributes of spatial 

data used and on calibration error statistics. 
(c) Develop generic models of uncertainty for radar rainfall estimates at the radar-bin 

scale and upscale uncertainty models to the scale resolved by the distributed and 
lumped models. 

(d) For each model type (lumped vs distributed) sample from the respective parameter 
uncertainty distribution and develop ensemble simulations for several significant 
events in the test catchment for the catchment outlet (area of order 10J km 2). 

(e) For each event, assess whether the ensemble of simulated flows by the lumped 
model at the time of the observed flow peak belongs to the same distribution as the 
ensemble generated for the same time and spatial scale by the distributed model. A 
Kolmogorov-Smirnov statistical test is used to compare the distributions. 

(f) Repeat (d) and (e), sampling from both the parametric and radar-rainfall 
uncertainty developed for each model type in (b) and (c). 

TEST BASIN AND MODEL PERFORMANCE 

The 1232-km2 Blue River basin with outlet near Blue, Oklahoma, is used as the test 
basin for this analysis. The basin is one of four basins used at the US Distributed 
Modeling Intercomparison Project (DMIP) organized by the US National Weather 
Service. It is in a semiarid environment, receiving much of its warm season rainfall 
from convective storms. The spatial data used in distributed modelling for the basin 
are: USGS Digital Elevation (90-m resolution); USGS LULC (200-m resolution); 
STATGO soils data; EPA Reach File 3 (RF3). The distributed model subdivides the 
basin into 21 sub-catchments with an average size of 59 km". Estimates of parameters 
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Table 1 Performance of lumped and distributed model for historical period. 

Distributed model Lumped model 
Calibration period 
Hourly cross-correlation 
Hourly flow bias 

8 May 1993-31 May 1999 
0.86 
1.40% 

8 May 1993-31 May 1999 
0.79 
5.80% 

and input were obtained for each of these sub-catchments. The lumped model con
siders the basin as an aggregate unit and applies parameters and input to the entire 
area. 

The hourly historical hydrometeorological data used consisted of: discharge 
(USGS site 07332500); NEXRAD (WSR-88D) Stage III Precipitation; and energy 
forcing provided by DMIP databases (air temperature, air pressure, solar radiation, 
relative humidity). The historical data period was of a 6-year duration. Table 1 
indicates the performance of the lumped and distributed models for the historical 
calibration period. The performance of the two models is comparable and it generally 
suggests that both models reproduce the historical flows well (less than 10% bias with 
an explanation of variance of hourly observed flows that is in the range 63-74%). 
There is slightly better performance shown for the distributed model. Georgakakos & 
Carpenter (2002) show simulations of individual events. 

MODELS FOR PARAMETER UNCERTAINTY 

The generic formulation for parametric uncertainty for both the lumped and the 
distributed model is: 

where \ia is the mean value of parameter a, and e a is a trmformly distributed error in range 
[-aL, <xj. 

For the distributed model, spatially uniform parameters were estimated with an 
adjustment made for the upper soil parameters to account for the different spatial scale 
of the various sub-catchments. The median of the range of the STATSGO database 
available water content and permeability was then used to distribute the parameter 
values in space, keeping the basin spatial mean equal to the uniform parameter 
estimate obtained earlier. In all cases, the ranges of the STATSGO database estimates 
were used to define the limit ct£ of the uniform distribution of the parametric error. 

The constant and the exponent parameters of the soil model percolation function 
were adjusted in space from their uniform estimates using the distribution of texture 
and a table of association of texture and percolation parameters developed by the Staff 
of the Hydrology Laboratory, US National Weather Service (reproduced here for 
convenience in Table 2). The ranges indicated in the table were used to estimate <XL in 
each case. In the soil model the percolation rate normalized by the maximum possible 
baseflow, p,„ is given by: 

a=ila+ e, 'a 

= l + Cx, M 
PH •n 
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Percolation exponent, M Percolation constant, C 

Sand 1.4-1.8 5-20 
Silt 1.8-2.5 20-75 
Clay 2.5-3.5 75-200 
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Fig. 1 Performance indices used in calibration of lumped model with Blue River data. 

where C and M are the percolation parameters and x„ is the lower soil zone storage 
available for percolation normalized by lower soil zone capacity (sometimes called the 
lower zone deficiency ratio). 

For the lumped model, the range in parameter error [-aL, aL] is determined by 
degree-of-belief estimates of the hydrologist who calibrated the lumped model for the 
Blue River basin. A ± 25% error range was used for the uncertain parameters of the 
upper soil zone. The diagrams of Fig. 1 show the effect on various model performance 
indices of using this uncertainty range during the calibration period. It is noted that the 
model performance indices have ranges that are within the range of model 
performance considered adequate when calibrating with multiple objectives, so the 
25% parametric uncertainty estimate appears reasonable for this basin and this model. 

MODELS FOR RADAR RAINFALL UNCERTAINTY 

The basis of the hourly mean areal rainfall estimates used for sub-catchments in this 
study is radar rainfall data, Stage III, from the NEXRAD (WSR-88D) radar. The radar 
rainfall data are available for radar bins of approximate size 3.5 x 3.5 km". For error 

Table 2 Association of soil texture and percolation parameters. 
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estimation of the mean areal rainfall for each sub-catchment of the distributed model 
and for the entire basin for the lumped model, an error model was postulated for radar-
bin rainfall estimates. The parameter of the radar-bin error model represents an error 
half-range that is a function of the radar rainfall estimate magnitude for the radar bin. 
The postulated model for the relative error half-range (E/R,„: error half-range E divided 
by observed rainfall Rm) is as follows: largest relative errors correspond to lighter 
rainfall amounts with a linear decrease of the relative error half-range with increasing 
observed rainfall amount up to 25 mm h"1. For rainfall amounts greater than 25 mm bf', 
the relative error half-range remains constant and equal to 0.5. The distribution of the 
radar-bin error is assumed uniform within the range limits [Rm - E, Rm + E], and no 
space correlation of the radar-bin error is assumed in this initial phase of the study. The 
latter postulate may result in underestimation of the rainfall error variance for sub
catchments that contain several radar bins, if in fact significant spatial correlation in 
radar-bin rainfall error exists. 

Using Monte Carlo sampling from the radar-bin error model for each of the events, 
parameters of error functions were developed for each sub-catchment of the distributed 
model as well as for the entire basin area as used by the lumped model. The error 
functions assumed uniform mean areal rainfall distribution for each sub-catchment, 
with a distribution half-range that is given relative to the mean areal rainfall of the sub
catchment in Fig. 2. Dependence of the relative half-range of the error for sub
catchments is still linear for mean areal rainfall rates less than 25 mm h"', but the slope 
and intercept of the line decrease with increasing sub-catchment area. The lowest fitted 
line in Fig. 2 corresponds to the entire Blue River basin area. The errors for each sub
catchment of the distributed model and for the entire basin for the lumped model were 
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Fig. 2 Sub-catchment relative error half-range EJRmc as a function of sub-catchment 
rainfall Rmc. The legend shows the number of bins for the sub-catchments of the Blue 
River. 
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assumed uniformly distributed in the range [Rmc - Ec, Rmc + Ec] with Rmc representing 
the sub-catchment rainfall mean (obtained by averaging the enclosed radar-bin 
observations), and Ec representing the error half-range. 

RESULTS OF APPLICATION 

A total of 25 events were selected from the historical database that spanned the period 
from December 1993 through March 1999. The methodology was applied as described 
above for each of these events. For each event the models to run in a Monte Carlo 
fashion (sampling from parametric and input uncertainty distributions) for 2 months 
prior to the event to establish a stable distribution of the initial soil moisture field at the 
beginning of the event and then the Kolmogorov-Smirnov test was applied during the 
event period. The Kolmogorov-Smirnov test statistic D0 is determined by: 

D0 = max I PDlslr (Qp) - Pmmp (QP) | 

Vxob {D > D0) = F{Ne,D0) 

" ND+NL 

with ND = NL =100 and with the following nomenclature: 
A D̂, number of distributed model ensemble members; NL, number of lumped model 
ensemble members; Q , simulated discharge at the time of the observed peak flow for 
each event; P D j S l r , cummulative frequency distribution of distributed model ensemble 
flows at peak time; PLump, cummulative frequency distribution of lumped model 
ensemble flows at peak time. 

The Kolmogorov-Smirnov test does not depend on the type of distribution but it 
does require that the distributions involved be continuous. It is most effective for 
measuring shifts in distributions (most sensitive around the median value of 
distributions). The null hypothesis in this application is that the two sets of flow 
samples, resulting from the distributed and the lumped models at the time of the 
observed flow peak are drawn from the same distribution (and therefore are indisting
uishable). The significance level probability for accepting the null hypothesis is 1%. 
For parametric uncertainty only, the test indicates that the distributions at the time of 
the observed peak are different at the 1% significance level. That is, Prob(D > Da) is 
less than 1% for all 25 events. When radar rainfall input uncertainty is added to the 
parametric uncertainty, then in all but one event Prob(D > Da) is less than 1%. These 
results imply that for this catchment and intercomparison scale, the distributed and 
lumped model ensemble flow simulations of high flows are statistically different with 
high confidence. 

Given that the distributed and lumped model simulations of event peaks are 
statistically different for virtually all events under parametric and input uncertainty, the 
question arises as to which model has better performance. This question requires the 
definition of a suitable assessment metric that explicitly takes into consideration that 
the flow "simulation" is in the form of an ensemble due to parametric and input 
uncertainty. The sample frequency that the simulated flow is within ± 20% of the 
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EVENT NUMBER 

Fig. 3 Differences in sample frequencies between distributed and lumped model of the 
event that the simulated ensemble flows at the time of the observed peak flow is 
within ±20% of the observed peak flow. 

observed peak flow is used as our assessment metric for this analysis. Figure 3 shows 
the differences in these sample frequencies between the distributed and the lumped 
model. Positive numbers indicate higher sample frequency for the distributed model, 
which is interpreted to mean better performance. Negative numbers indicate better 
performance for the lumped model. There are 100 samples in each ensemble of 
simulated flows for each of 25 events. Because the assessment metric depends on the 
number of samples, only values outside the interval [- 0.2, + 0.2] are considered 
indicative of better performance. Values of the assessment metric within the interval 
were considered uncertain. The results in Fig. 3 show that in 44% of the events the 
distributed model had a better performance, in 36% of the events the lumped model 
had a better performance and in 20% of the events best performance could not be 
determined with the given assessment metric. Study of the dependence of the model 
performance with respect to magnitude of the observed peak flow indicated that the 
distributed model is clearly better in the medium peak-flow range. For the highest peak 
flows there is indication that the lumped model performs better, but more data is 
necessary for a more definitive statement in this peak-flow range. 

CONCLUSIONS AND RECOMMENDATIONS 

A new methodology is described and applied in this paper for determining whether 
distributed model performance is different from lumped model performance under 
parametric and input uncertainty. A probabilistic metric is also proposed to assess 
which model has better performance, once it is established that the model simulations 
are distinguishable with high confidence. The methodology was applied to the 
1232 km 2 Blue River basin with outlet near Blue, Oklahoma. The results of the 
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application show that the ensemble flow simulations from distributed and lumped 
models are statistically different with a high degree of confidence, and that for medium 
flow events, the distributed model has a better performance than the lumped model. 

It would be useful for future research to improve the input error models used 
herein. Allowing spatio-temporal dependence on the radar-bin error model is an 
especially important research area. If such dependence is high, then it is likely that in 
terms of being able to distinguish lumped from distributed model simulations in the 
present operational environment the results presented in this paper are rather 
optimistic. The use of various levels of spatial aggregation for the distributed 
hydrological model and application of the proposed methodology is another area of 
future research, which would help determine the spatial scale of model discretization 
that is most suitable for use with operational estimates of parameters and input. Lastly, 
application of the methodology to other basins and different types of distributed 
models should also be made. 
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