INTEGRATION OF A STRESS FACTOR IN SEBS FOR IMPROVING THE ESTIMATION OF EVAPOTRANSPIRATION DURING WATER STRESSED CONDITIONS

al Research Foundation South African Environmental Observation Network

Water affairs Department: Water Affairs REPUBLIC OF SOUTH AFRICA

Gokool S, Riddell ES, Jarmain C and Chetty KT

OVERVIEW

1. INTRODUCTION

- 2. OVERVIEW AND AIM OF THE STUDY
- 3. MATERIALS AND METHODOLOGY
- 4. RESULTS AND DISCUSSION
- 5. CONCLUSION

Monitoring and gauging of hydro-meteorological fluxes in arid and semi-arid environments
remains fairly limited. (Lange et al., 2005, Costa et al., 2013)

- Subsequently, may limit extensive hydrological research to be undertaken in these environments. (Lange et al., 2005)
- In such circumstances satellite earth observation (SEO) technologies may prove to be invaluable.

- In recent times satellite-based approaches are being utilized more frequently for hydro-meteorological observations. (Gokmen et al., 2012)
- Numerous satellite-based methods have been formulated for the estimation of ET. (Bastiaanssen., et al 1998; Senay et al., 2007; Gokmen et al., 2012)
- Some of the most commonly applied models include;
- 1. SEBS (Su, 2002)
- 2. SEBAL (Bastiaanssen et al., 1998)
- 3. METRIC (Allen et al, 2007)

- Satellite-based ET estimation models makes allowance for the relatively timeous and cost effective quantification of ET. (van Dijk and Renzullo, 2011)
- Accurately representing ET dynamics under different climatic regimes may prove to be challenging. (Seneviratne et al., 2010)
- These approaches may overestimate ET in arid and semi-arid environments. (Seneviratne et al., 2010)

- Inability to adequately represent the influence of soil moisture availability and biophysical characteristics. (Gokmen et al., 2012; Pardo et al., 2014; Wu et al., 2014; Huang et al., 2015; Li et al., 2015)
- Influence of these parameters, implicitly encompassed in model input variables.
- Assumption may be valid for environments in which the available energy is the limiting factor for ET.
- Underestimation of sensible heat flux for water limited environments.

Background

• SEBS was applied to determine the ET within a semi-arid savanna landscape.

Criteria for model selection:

- Extensively applied for the estimation of regional fluxes and ET (Yang et al., 2010; Zhuo et al., 2014)
- Freely available of the ILWIS platform
- Relatively user-friendly
- Tutorial information available

Background

- Previous studies have reported uncertainties in flux and ET estimates.
- Over-estimation of ET ranged from 0.50 to 3.00 mm d⁻¹.
 (Timmermans and Meijerink, 1999; Lubczynski and Gurwin, 2005; van der Kwast et al., 2009)
- General degree of overestimation was shown to be higher for regions dominated by sparse vegetation coverage and drier soils.

(Pardo et al., 2014)

Background

- Recent studies have attempted to correct this limitation through the integration of a scaling factor in SEBS.
- **SEBS**_{SM} (Accounts for the influence of soil moisture) (Gokmen et al., 2012)
- SEBS_{NDVI} (Accounts for the influence of LST and biophysical characteristics) (Pardo et al., 2014)
- These modified versions of SEBS have been shown to provide improvements in mapping of ET to better quantify regional energy and water fluxes.

Rationale

- In this study we propose the use of an alternative scaling factor to better characterize ET at the field scale.
- The proposed scaling factor considers the influence of environmental stress on fluxes and is given as:

$$Kc_{act} = \frac{ET_a}{ET_o}$$

Where:

 Kc_{act} , hereafter referred to as *ESF*, is the actual crop coefficient which accounts for the influence of environmental stress (Allen et al., 2005)

The aim of this study was to implement the modified version of SEBS to capture the ET within a semi-arid savanna landscape.

Specific objective:

Original SEBS (SEBS₀) vs Modified SEBS formulation (SEBS_{ESF})

 The modelled ET acquired for each of these approaches was validated against Eddy covariance ET measurements.

Study Sites

- Site 1: Riparian zone of Groot Letaba River (Riddell et al., 2017)
- Site 2: Malopeni Flux Tower (CARBOAFRICA network) (Ramoelo et al., 2014)
- The measuring sites are situated in a semi-arid summer rainfall region.
- Warm conditions in the eastern region to cooler conditions in the mountainous regions.

(Katambara and Ndiritu, 2010; Pollard and du Toit, 2011a)

Study Sites

- A vast majority of the study region is underlain by gneiss and granite. (Heritage et al., 2001)
- The study sites are dominated by pristine savanna vegetation. (Ramoelo et al., 2014; Riddell et al., 2017)

Site 1

Site 2

Phragmites mauritianus (Lowveld Reed)

Colospherpemum mopane (Balsam or Butterfly Tree)

Data Sets: Meteorological Data

- Energy flux and meteorological data were acquired from EC flux towers installed at Sites 1 and 2.
- Site 1 measurement period (17th June to 22nd October 2015)
- Site 2 measurement period (18th May to 11th November 2016)
- The timing of the study coincided with a large El Nino induced drought period.

- Data Sets: Satellite earth observation data
- Satellite images were acquired for the corresponding measurement periods
 - 1. 13 (2015 and 2016) clear sky Landsat (7 and 8) Level 1 Geotiff products
 - 2. 106 (2015) and 101 (2016) clear sky MODIS Level 1 B Terra images
- Pre-processing of images was conducted using ILWIS,

the MODIS Swath Tool and HDF view (Su and Wang, 2013; Singh et al., 2014a and USGS, 2015)

SEBS Processing and Modifications

- The requisite land surface parameters and meteorological data were used as inputs to SEBS.
- The ESF scaling factor was then used to adjust the evaporative fraction estimated in SEBS.

1.
$$ESF = \frac{ET_a}{ET_a}$$

٠

2. $EF_{new} = EF_{old} * ESF$ Based on the approach adopted by Pardo et al. (2014)

- EF_{new} was then applied in conjunction with the R_n and G_0 previously determined in SEBS₀
- The sensible heat flux was also recalculated using EF_{new} , to ensure closure in the energy balance equation.

Site 1: SEBS ET derived from MODIS Data

• Improved correlation with EC_{ET}

Site 1: SEBS ET derived from Landsat Data

Improved correlation with EC_{ET}

Site 2: SEBS ET derived from MODIS Data

Improved correlation with EC_{ET}

Site 2: SEBS ET derived from Landsat Data

Improved correlation with EC_{ET}

- Significant improvement in the correlation between measured and modelled ET.
- Significant decrease in the degree of over-estimation in the modelled ET estimate.
- Significant increase in the percentage of estimates within an acceptable accuracy range.

- Improvements to MODIS derived ET estimates were lower than for Landsat derived ET estimates at both sites.
- This could be attributed to the spatial resolution of MODIS ET (1 km spatial resolution).
- MODIS ET estimates captured ET of land uses outside the footprint of the EC flux tower.

- The performances of the modified version of SEBS is dependent on the adequate derivation of the *ESF*.
- Therefore careful consideration needs to be taken when determining the potential ET for the study area.
- Availability of spatially representative *in-situ* measurements required to derive the ESF.
- SEBS_{ESF} approach is well suited for local mapping of ET, however it may be difficult to implement this approach for the regional mapping of ET.

- Further testing and validation of the SEBS_{ESF} approach is recommended in other environmental settings.
- Preliminary findings highlight the potential of implementing SEBS_{ESF} for the local mapping of ET.

ACKNOWLEDGEMENTS

- The researchers involved in this study would like to extend their gratitude to:
- The Water Research Commission (WRC) and the South African Environmental Observation Network (SAEON) for the funding required to successfully complete this research.
- SAEON staff and management at the Phalaborwa offices, with special mention to Martie van der Westhuizen.
- The SanParks game guards and environmental monitors who assisted during the collection of *in-situ* data, with special mention to Desmond, Lassy, Patrick, Mightyman and Elijah