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Introduction 
 
This article focuses on two fundamental approaches to seasonal snow and glacier 
surface melt modeling, specifically the differences between empirical (or temperature-
index) and physically-based (or mass- and energy-balance) snow and ice melt models. 
This article is intended as a concise primer for students, practitioners, and scientists who 
are new to the field of snow hydrology, deal infrequently with snowmelt modeling, or 
need to understand the strengths and limitations of the two fundamentally different, yet 
commonly used, approaches to snow and ice melt modeling.  
 
The Snowcover Energy Balance 
 
To understand the strengths and limitations of these two different snow and ice melt 
simulation approaches, it is important to conceptually understand the components that 
comprise the snowcover energy balance.  Net radiation (Rn) is comprised of net 
shortwave (Sn, 0.28-2.5 μm) radiation originating from the sun and reflected by the snow 
surface, and net longwave (Ln, 4 – 100 μm) radiation emitted by the atmosphere, 
topography, vegetation, and snow surface. Sensible (H) and latent (LE) heat fluxes 
result from gradients in air temperature and water vapor density, respectively, combined 
with turbulent motion of the atmosphere.  Ground (G) heat flux results from the 
conductive heat transfer between the snowpack and ground, and advective (M) heat flux 
result from the addition of mass, in the form of rain or snow to an existing snowcover. 
Except for Sn, components of the energy balance can be either positive or negative; that 
is, the snowpack can gain or lose energy by each process. The net change in the energy 
budget of a snowcover (ΔQ) over a period of time is therefore given as the sum of all 
energy balance components: 
 

        Eqn. 1 
 
The accurate simulation of snowpack energetics, and hence melt dynamics, should 
therefore include either an explicit representation of all energy flux components 
separately, or an effective proxy that is a reasonable estimate of the net energy flux. 
 
Snowcover Simulation Approaches 
 
There are two distinct approaches to that are commonly used for snowmelt modeling; 
empirical and physically based. Empirical models are advantageous because they can 
simulate a variable of interest with relatively little data that is commonly available (e.g. 

ΔQ = Rn + H + LE +G +M
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only air temperature), and require little computational power. A distinct disadvantage of 
empirical models is that they may not be valid outside of the range of conditions for 
which they were developed. Conversely, physically based or theoretical models have the 
distinct advantage that they should produce accurate estimates of a variable of interest, 
if both the forcing data and the equations that represent specific physical processes are 
accurate and well-parameterized, since they are based on fundamental physics. 
Physically based models have the disadvantage that they frequently require many 
environmental variables that may not be commonly collected, and can be 
computationally expensive. Despite these data requirements, where data are not 
available, estimation techniques may be used to derive the necessary input variables 
(Walter et al., 2005). 
 
Temperature-index and accumulated degree-day snowmelt models are classic examples 
of empirical models, where daily snowmelt rates are estimated from air temperature 
measurements using a simple statistical regression with as few as 1 or 2 parameters 
(e.g. Hock, 2003).  Near surface air temperature has been shown to be an effective 
predictor of snowmelt at daily and longer scales because it exerts a strong control on 
atmospheric longwave radiation which is a major source of energy for melt during the 
seasonal ablation period (Ohmura, 2001), as well as Rn and H which are which are 
important sources of energy for melt during the seasonal ablation period (Marks et al., 
1998).  Conversely, because air temperature does not represent all energy balance 
components, these general models are likely to fail in conditions outside of their period 
of calibration. For example, the common lack of correlation between air temperature and 
LE implies that temperature-index models are likely to fail during conditions such as rain-
on-snow events.  Likewise, these models may fail following events that perturb net solar 
radiation, like darkening of the surface following deposition of dark aerosol like dust, or in 
cold, high environments where shortwave radiation is high and melt can occur even at 
low air temperatures. While the empirical modeling approach may appear, and often is, 
too simplistic to accurately describe individual snowmelt events, it has successfully been 
used to provide reasonable estimates over long time frames. In contrast, physically 
based snowmelt models are particularly suitable to provide snowmelt estimates based 
on the specific meteorological conditions at high temporal and spatial resolutions. This 
approach therefore requires measurements, or estimates, of many variables and 
parameters including incoming shortwave and longwave radiation, air temperature, 
humidity, wind speed, soil temperature, snow surface albedo, and roughness length (e.g. 
Marks et al., 1999), and in some cases corrections for sub-canopy meteorological 
conditions (Marks et al., 2016).  
 
Simulation Examples  
Example 1 
 
A simple temperature-index snowmelt model can be defined as: 
 
 

        Eqn. 2 
 

W =
fm Td -T0( ),   Td > T0

0,                  Td ≤ T0
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where: 
W = daily snow melt (mm) 
fm = melt factor (mm day-1 K-1) 
Td = average daily air temperature (K) 
T0 = threshold melt temperature (K) 
 
To apply the 
model, it must be 
parameterized, or 
calibrated, by 
determining fm 
and T0 using 
observed data. 
Figure 1 shows 
measured air 
temperature and 
snowmelt data 
from the Reynolds 
Creek 
Experimental 
Watershed for 
1985 that was an 
approximately 
average snow 
year. The best fit 
line to Eqn. 2. is shown on the diagram as a solid red line.  The model fit indicates that 
the model generally represents the amount of snowmelt for a given daily average air 
temperature but has considerable errors on a daily basis. To test the validity of the 
model, it should be assessed with an independent dataset. Figure 2 shows the simulated 
snowmelt for 1992, based on the parameters derived for the 1985 dataset. In this case, 

the model 
overpredicts 
snowmelt rates 
most of the time, 
although the 
generally increasing 
rates with air 
temperature are 
predicted, as would 
be expected. 
Depending on the 
specific modeling 
objectives, this 
amount of error 
may be deemed 
acceptable since 
the general 
behavior of the 
snowpack dynamics 

 
Figure 1. Model parameterization based on snowmelt data 
observed in 1992.  
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Figure 2. Predicted snowmelt for 1985 based on 
parameterization developed for 1992. 
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are reasonably represented, but it is important to note that considerable inter-annual 
variations in empirical melt factors can and do occur. 
 
Example 2 
As noted above, the explicit representation of all snowpack energetic components is 
needed to accurately represent snowpack dynamics. This is especially important for 
cases where melt can be partly driven by large contributions of energy fluxes that are 
typically less dominant, such as latent energy fluxes. An excellent example of this case 
is the major rain-on-snow (ROS) flood that occurred in the U.S. Pacific Northwest in 
February 1996. This extreme melt event is detailed in the paper by Marks et al. (1998) 
that also is an example of the application of a physically-based mass- and energy-
balance snowmelt model to understand the spatiotemporal variation of snowmelt 
processes that contributed to an extreme flood event.  A key feature of the event was 
that the snowmelt was strongly driven by turbulent (sensible and latent) energy fluxes for 
the first half of the event, and by radiation fluxes during the latter portion of the event as 
shown and discussed in Marks et al., 1998. 
 
The parameterization for the 1992 winter at the Reynolds Creek Experimental 
Watershed which experiences a generally similar climate regime was used to simulate 
the melt dynamics for the 1996 ROS event. A comparison of the daily melt rates 
simulated with a physically based snowmelt model that was shown to accurately 
reproduce observations (Marks et al., 1998) and a temperature-index and are shown in 
Figure 3. In this case, the peak daily melt rate simulated by the temperature-index model 
was over a factor of 3 less than the amount simulated with the physically based model 
during the turbulent energy-driven portion of event. In contrast, the melt rates during the 
second half of the event that was strongly radiation-driven were much more similar. This 
result is not surprising, since the seasonal snowmelt at the Reynolds Creek 
Experimental Watershed is typically radiation-driven and well correlated with air 
temperature; hence the calibration derived for radiation-driven melt fortuitously 
represented the similar melt conditions even though the calibration was derived for a 
different year and site 
that was over 400 km 
away. The 
temperature-index 
model in this case is 
clearly not an 
appropriate tool to 
simulate the extreme 
ROS event which 
likewise is not 
surprising, since such 
events are partially 
driven by high vapor 
pressures and 
windspeeds which 
were not correlated 
with air temperature. 
 
  

  
Figure 3. Comparison of a physically-based and 
temperature-index methods to simulate a major flood event 
(1st peak)    
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Summary 
 
The simple examples presented above demonstrate specifically how temperature-index 
snowmelt models, or more generally, empirical models can effectively simulate a 
variable of interest when environmental conditions are similar to the calibration period.  
The examples likewise demonstrate how temperature-index models can be in error, or in 
some cases fail disastrously, when hydrometeorological conditions differ substantially 
from calibration periods.  Similarly, even when well-performing models are spatially 
distributed, inaccuracies can also occur due to differing microclimatic conditions in 
complex terrain and within vegetation canopies, even over very small distances (Kumar 
et al., 2013). Temperature-index model performance can hence be potentially improved 
by incorporating additional parameters and/or formulations to more accurately represent 
net radiation (e.g. Brubaker et al., 1996) and/or serve as proxies for other energy flux 
components. The accuracy for diverse hydrometeorological and biophysical conditions 
however, will still be limited by the fact that they do not explicitly simulate the specific 
components that control snowmelt dynamics. The performance of physically-based 
models can likewise be limited where accurate and/or distributed input 
hydrometeorological data and parameters are not available. These limitations should not 
cause model users to reject particular classes of models, but to carefully and critically 
evaluate whether a given modeling technique is appropriate for their specific objectives. 
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