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Abstract The assessment and mapping of flood risk involves many different sources of 
uncertainty.  Many of these sources of uncertainty involve epistemic uncertainties that 
are not necessarily easy to represent statistically.  This can create problems for 
communication between analyst and users when uncertain flood risk maps are being 
prepared.   It is suggested that one way of dealing with this problem is to define Guidelines 
for Good Practice in the form of a set of decisions that must be agreed and recorded for 
later evaluation and review.  The Catchment Change Network (CCN) is a knowledge 
transfer project, funded by the UK NERC, that aims to bring academic research and 
practitioners together to produce guidelines for good practice for uncertainty estimation in 
predicting the future in the areas of flood risk, water quality and water scarcity all of which 
involve important epistemic uncertainties.  The paper will set out the background to 
developing Guidelines for flood risk mapping and give an application to a site in 
Yorkshire, UK. 
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THE BACKGROUND TO PREDICTING CATCHMENT CHANGE 
 
The current legislative framework for management of water in Europe, including the 
Water Framework Directive and Floods Directive requires some hard decisions about 
future investments to achieve the requirements of good ecological and chemical status 
for sustainable use and good flood risk management.   Such decisions require 
predictions about the nature of future hydrological responses, predictions that must be 
inherently uncertain.   The degree to which the predictions are uncertain, and the 
possibility of constraining the uncertainty by the collection of (cost-effective) 
observations, might change the investment decisions taken.   So, it follows that as well 
as needing good models to make such predictions, we also need robust ways of 
estimating the associated uncertainties in a way that can inform a risk-based decision 
making framework.  This is currently a difficulty because we cannot be sure that our 
models or knowledge of the relevant boundary conditions are adequate (particularly in 
water quality, ecohydrology and the flood risk example in this paper) nor can we be 
sure that all the uncertainties are aleatory or can be treated as if they were aleatory.  
Thus, good practice is not necessarily to invoke statistical uncertainty estimation which 
does not deal well with complex epistemic uncertainties (see Beven, 2002, 2006, 
2009). This then raises some interesting issues about what form guidelines for good 
practice should take.  
 
 
THE NATURE OF ERRORS IN ENVIRONMENTAL MODELLING 
 
It has been traditional to deal with uncertainty in risk-based decision making in terms 
of probabilities.  Indeed some statisticians suggest that probability is the only coherent 
framework with which to deal with uncertainty (e.g. O'Hagan and Oakley, 2004).  This 



implies however that the uncertainties can be assumed to be aleatory (i.e at base due to 
random variability) in nature, or, at least, can be treated as if they were aleatory in 
nature.  But this is often difficult to justify given the nature of errors in environmental 
modelling.  We can recognise, all too easily, sources of epistemic uncertainty in 
representing environmental systems.  Epistemic uncertainty arises from lack of 
knowledge and may be difficult to characterise due to changing characteristics in time 
and space. Epistemic uncertainty arises in the meaning of observations, in the 
representation of relevant processes in a model structure, and in the representation of 
the boundary conditions and states of that model.  Very often, we also understand that 
the nature of such errors will be nonstationary in time and space; variability that will 
ultimately control the complex structure of any residual series between model 
prediction and observation.    This recognition is not new.  Such errors are what Frank 
Knight (1921) called the real uncertainties as opposed to those that could be assessed 
in terms of odds.   
 
The case study introduced later is concerned with uncertain flood risk mapping, so let 
us consider which sources of uncertainty that influence the assessment of flood risk in 
space are aleatory in nature, and which are epistemic.   In flood risk mapping, a 
distributed hydraulic model (generally formulated in either 1 or 2 dimensions) is 
provided with upstream, downstream and lateral boundary conditions.  To make 
predictions it will require a representation of the geometry of the flood plain, and a 
representation of the conveyance of the channel and flood plain (including the 
representation of geometry and any effects of vegetation, structures, hydraulic jumps, 
internal shear on effective momentum losses etc). Uncertainty in such flood inundation 
predictions has been considered in the past using a variety of different models and 
methods (e.g. Romanowicz et al., 1996; Romanowicz and  Beven, 1998, 2003; Aronica 
et al. 1998; Bates et al., 2004; Pappenberger et al; 2005, 2007a,b; Werner et al.,2005; 
Mason et al., 2009).  All of these papers have included only some of the relevant 
uncertainties, though in many cases this was justified by conditioning on observed 
inundation data to give a likelihood to each of an ensemble of simulations such that 
any sources of uncertainty not treated explicitly can be assumed to have an implicit 
effect.  It does not then follow that predictions under different (possibly more extreme) 
conditions will be equally well represented (see, for example, the three events 
considered in Romanowicz and Beven, 2003).  For a full risk analysis, estimates of the 
potential damages for different levels of inundation will be required.  This will be a 
further source of uncertainty. 
 
In fact, it is difficult to see any of the sources of uncertainty listed above as free from 
epistemic uncertainty. Consider the representation of the boundary conditions.  One 
dimensional hydraulic models require two boundary conditions (for sub-critical flow) 
at both upstream and downstream boundaries because there are two unknowns.   This 
is normally achieved by setting a water level and then inferring a mean velocity or 
discharge from a rating curve or uniform flow equation (assuming a water surface 
parallel to the bed slope). Two-dimensional models are more complex in requiring 
water levels and velocities in every element at the upstream and downstream 
boundaries, though usually similar simplifying assumptions are made.   However, it is 
rare that rating curve observations extend to flood stages, even at gauging stations.  
Thus there is a certain lack of knowledge about what the true mean velocity (or 
equivalent roughness) would be when a hydraulic model is used to predict extreme 
flood events. The boundary conditions will be subject to epistemic error. 



Similarly, lateral inflows (or transmission losses) are often neglected as negligible or 
estimated from rather poor information, unless there is a major tributary (which will be 
subject to similar or greater uncertainty to upstream and downstream boundary 
discharges).  Over short reaches this may be acceptable; over long reaches it will be a 
source of error and uncertainty, but because we have little knowledge of how to 
estimate the magnitude of lateral inflows, this will be epistemic in nature. 
 
Channel geometry can be another source of epistemic error.  Surveys of the in-bank 
channel are expensive and are only made at a restricted number of cross-sections.  
Representation of flood plain geometry and infrastructure has improved with the more 
widespread availability of high resolution LIDAR and SAR digital elevation data, but 
there may still be features such as field boundaries, walls and flow pathways under 
bridges that affect the effective roughness, water storage and flow velocities on flood 
plains but which do not appear in the digital elevation model.  Estimates of the nature 
of the vegetation on flood plains from LIDAR surveys have also been used to  estimate 
roughness coefficient (e.g. Mason et al., 2003) but LIDAR surveys are rarely repeated 
and vegetation is not a stationary characteristic. There will be epistemic uncertainties 
in inferring values of an effective roughness coefficient at different times and flood 
magnitudes from the limited data available.  
 
The debate has not even started about how far such uncertainties can be represented as 
if they were aleatory probabilistic errors. Certainly we need to make some assumptions 
about the nature of such errors even in making plausible scenario simulations (or 
continue to treat them implicitly when calibration data are available). The question is 
how to agree what assumptions to use.     
 
 
DEVELOPING GUIDELINES FOR GOOD PRACTICE IN INCORPORATING 
RISK AND UNCERTAINTY IN ENVIRONMENTAL MODELS 
 
This recognition of complexity in uncertainty estimation underlies the concept of using 
Guidelines for Good Practice as a way of sharing experience in this type of 
environmental modelling problem. Such Guidelines can serve as a repository for 
experience in dealing with different types of uncertainty in different types of 
application.  There are many existing guidelines or standards used for assessing flood 
risk and resulting planning decisions in different countries. The Floods Directive itself 
is a framework for setting standards in assessing flood risk. Few such standards to date 
have, however, taken any account of the different sources of uncertainty in assessing 
flood risk. But taking uncertainty into account might be important if it changes the 
types of planning or flood defence strategy decisions that are taken.    
 
 
THE CATCHMENT CHANGE NETWORK (CCN) 
 
Developing Guideline-based decision-support systems is one of the aims of the 
Catchment Change Network, a NERC Knowledge Transfer project being led by 
Lancaster University in tandem with other Universities (Durham, Leeds and 
Newcastle), UK regulatory agencies and the business community.  The Network – 
made up of three discrete but interlinked Focus Areas covering flood risk, water 
quality and water scarcity – will exchange knowledge across a wide range of project 
partners about how best to handle uncertainties in integrated catchment management. It 



recognises a need to reduce the dissemination gap –the disparity between the largely 
academic knowledge base and its implementation across a range of user groups and the 
need for a supportive professional framework to ensure consistency and the sharing of 
knowledge and best practice. It also supports implementation of greater transparency 
within the decision process and so enhances credibility and trust across catchment 
management activities. 
 
To date, it has formalised a growing network of scientists and science users across 
catchment management with a broad interest in the implications and adaptation to 
future change. It has also developed and delivered a series of exploratory Workshops 
designed to develop the framework and content of our practical guidance and also held 
its first annual conference to encourage dissemination and actively identify future 
research requirements. 
 
Ultimately, the key aim of the Network is to integrate modern uncertainty estimation 
methods to improve decision making for adaptive management across catchments. 
Workshop activities in each of the Network Focus Areas have recently explored the 
form, scope and content of such Guidance with debate centering on sources of 
uncertainty, the range and composition of audiences for the guidance produced and the 
communication and transparency of the underlying assumptions made.  
 
Progressively updated Guides to Good Practice will be produced for each of the three 
Focus Areas with content defined and developed via Workshop activities and 
interactive web-based involvement across a range of stakeholders. The web site 
www.catchmentchange.net will act as both an information hub and knowledge 
exchange portal to communicate and interact across our project partners both in the 
UK and Europe. These documents will outline the current state of knowledge and 
science, provide guidance for tools that could be used for taking account of 
uncertainties in different types of applications and outline practical case studies of 
where tools have been applied successfully. 
 
Our intention is that these guides will ultimately become embedded across a wide 
range of catchment management professionals with the aim of encapsulating a 
convenient decision-support framework for practitioners and decision makers by 
focussing on key variables whilst clarifying the strength of available evidence.  These 
will be living documents that, with broad user input will be refined as experience of 
"good practice" increases.  One way of ensuring this is to structure the Guidelines in 
terms of a set of decisions about options that have to be agreed between analysts, 
stakeholders and users.        
 
 
GUIDELINES AS A TRANSLATIONARY DISCOURSE BETWEEN 
MODELLER AND STAKEHOLDERS 
 
One barrier to the uptake of uncertainty estimation for these types of environmental 
problems involving epistemic uncertainty is the communication of information 
between analyst and client, decision maker, policy maker or other stakeholder. Our 
experience from workshops run to discuss the incorporation of risk and uncertainty 
into decision making is that decision makers are not reluctant to deal with uncertainty 
(though they would like to see it managed and reduced as far as possible) but they 
want to be quite clear about what is being presented.  Faulkner et al. (2007) discuss 



this issue in applications to flood risk management and suggest that a translationary 
discourse between modeller and stakeholder is necessary. This requires that not only 
the results of an analysis be communicated, but also the assumptions on which the 
analysis is based. Thus, a framework is required that allows this communication to 
start at an early stage.   
 
One way of trying to achieve this is being tried in terms of defining the Guidelines for 
Good Practice as a set of decisions to be agreed between the modeller and user.   The 
decisions will cover uncertainties in data and modelling, together with choices for the 
presentation and visualisation of the results.  Response to those decisions can be 
agreed and recorded as part of the audit trail for a particular application.  Such a 
decision structure allows such evolution over time (including, for example, making the 
Guidelines available as a wiki document to which anyone can contribute, see also 
Pappenberger et al., 2006), while making the assumptions of any analysis to be defined 
explicitly and therefore open to later evaluation and review.   
 
A summary of the current list of high level decisions in the draft of the Guidelines for 
Good Practice for Flood Risk Mapping, under their highest level categories, is given in 
Table 1.  The methodology allows for different types of decision trees at lower levels 
depending on the options chosen at higher levels.  
 
 
A CASE STUDY: MEXBOROUGH, YORKSHIRE 
 
In summer 2007 in the UK there were 2 periods of extensive pluvial and fluvial  
flooding. The area around Mexborough was flooded during the event of 25th June 
when some 80 mm rainfall fell on already wetted catchments.  This region has been 
modelled by JBA Consulting for a (deterministic) evaluation of flood risk using the 
JFLOW model (Bradbrook, 2006), in the version implemented on graphics processing 
units (GPUs) (see Lamb et al., 2009). This greatly speeds up the 2 dimensional 
calculations which then allows many runs of the model to be made in assessing the 
effects of different sources of uncertainty. There is no space here to address the 
responses to all the decisions required for this application outlined above but a 
summary is given in the text below and in Table 1. 
 
Figure 1 shows the modelled depths of flood inundation predicted using the JFLOW-
GPU model following model conditioning using the observed extents for the peak of 
the 2007 event.   Effective roughness coefficients, here assumed uniform in space for 
channel and floodplain were sampled from prior uniform distributions.  Some 500 
model runs were made to span the range of the roughness distributions.  Each run was 
then assigned a posterior likelihood value based on how well it simulated the observed 
wrack marks associated with maximum inundation extent.  Due to the complex 
interaction between model parameters and the input uncertainty, this model performs 
acceptably well over a range of effective roughness values.   
 
 
 
 
 
 
 
 



Table 1. Shows condensed responses to the Guidelines for Good Practice in flood risk mapping high 
level questions applied to the Mexborough (Yorkshire UK) case study. 
 
 High level decision 

description 
Mexborough case study 

D1 Uncertainty in design flood 
magnitude 

Use WinFAP to calculate AEP using the single gauge site at 
Adwick. The 2007 event data was included as this had a 
significant effect on the analysis results.  

D2 Uncertainty in conveyance 
estimates 

A DTM, cross-section geometry, and wrack mark data base were 
used to calibrate roughness/channel capacity parameters 

D3 Uncertainty in rating curve 
extrapolation 

The stage to flow relationship is thought to be valid for events of 
~0.01AEP. A calibrated regression equation was used to generate 
flow estimates for 0.01AEP of between 73.5 and 71.1m3s-1   

D4 Uncertainty in flood plain 
topography 

A 2m resolution LiDAR topography map was used. This 
resolution exceeds the JFLOW model resolution 

D5 Uncertainty in model 
structure 

The JFLOW model scheme was limited to 3 variables: a 
uniformly distributed Manning's N value, channel capacity, and 
upstream inflow. 

D6 Uncertainty in effects of 
flood plain infrastructure 

No consideration of infrastructure is included beyond that 
represented by the DTM 

D7 Uncertainty in observations 
used in model 
calibration/conditioning 

Estimates of +/-95% confidence intervals are available for stage 
measurement, no uncertainty is considered for DTM 

D8 Uncertainty in assessing 
effects of future catchment 
change 

None considered for this application 

D9 Uncertainty in assessing 
effects of future climate 
change 

None considered for this application 

D10 Uncertainty in fragility of 
defences 

None considered for this application 

D11 Uncertainty in 
consequences/vulnerability 

Results not extended to vulnerability for this application 

D12 Assessing interaction 
between sources of 
uncertainty 

Assumed to be handled by weights associated to MC simulation 
results 

D13 Defining an uncertainty 
propagation process 

Use MC simulation. The chosen sampling strategy is a 500 
member ensemble using independent random sampling across the 
three parameters chosen to represent model uncertainty: 
Upstream inflow, channel capacity, and floodplain roughness 

D14 Defining a model 
calibration/conditioning 
process 

A posterior likelihood function was formed for the model 
parameter space conditioned on the fit of the inundation outline 
of a single large flood event (June 2007) 

D15 Defining a presentation 
method 

GIS and Google map with interactive querying using DHTML  

D16 Managing and reducing 
uncertainty 

No new data is available that could be used to reduce uncertainty 
at time of writing 

 
 
 
 



Fig 1.  Mexborough 2007 - JFLOW predicted peak inundation depths and point flood extent 
observations made after the 2007 event. 

 
An important uncertainty, both for the historical event and for any design event 
subsequently used for flood risk mapping is in the input discharge.  In this case an 
annual maximum flood series from the local gauging station were available for 
analysis. The procedures of the UK Flood Estimation Handbook (FEH, Institute of 
Hydrology, 1999) were used to estimate the AEP0.01 (100 year return period) peak 
discharge using the FEH WinFAP software to fit the Generalised Logistic Distribution.  
This is the distribution of choice in the FEH recommendations, but is fitted without 
any account taken of the potential uncertainties in the historical flood peak estimates.   
It does however allow an estimate of the distribution of the desired return period to be 
made, under the statistical assumptions of the distribution fitting. In this case the best 
estimate of the AEP0.01 flood was estimated to have a mean of 86.6 m3s-1 with 
standard error 2.5 m3s-1.  In this case, the input discharge from upstream was thought 
to dominate any lateral inflows and there were no significant tributaries so it was not 
necessary to simulate covarying inputs. This input discharge distribution was run, 
using Monte Carlo sampling, with the uncertain flood inundation model to produce 
uncertain flood extent maps that can then be used in further risk analysis.   
 
As part of this work, a visualisation tool for uncertain risk maps has been developed 
with a view to developing Guidelines for how to present the results to users.  The latest 
version of the tool makes use of Google Maps to overlay the results of the uncertain 
design flood simulations. Figure 2 shows the outputs from the likelihood weighted 
ensemble of model runs interpreted as risks of inundation. Here, the database 
generated by the modelling exercise is tied to the base Google map in such a way as to 
allow the user to perform interactive attribute selection using a slider tool. The 
attributes of the database include probability of inundation exceedance and probability 
of depth exceedance (for a given depth). The user can also interact with the map by 
clicking at a point to select from the database the probability of the flood exceeding a 
range of depths at the chosen location. Further work using open source GRASS and 
Quantum GIS software that allows these risk maps to be registered to properties for 
damage calculations is currently in progress. 
 
From Figure 2 it can be seen that some areas at risk of flooding are relatively 
insensitive to the uncertainties considered, where a relatively flat floodplain is bounded 
by rather steep topography at its margin. In such locations, variations in predicted 
depth of inundation have little effect on predicted extent. Other areas are much more 
sensitive.  There is a sewage treatment works on the southern edge of the town, close 
to the river, that is protected by flood embankments.  For a purely deterministic flood 
risk map, this is shown as not being at risk at flooding, but if the uncertainties are taken 
into account it is at potential risk of flooding.  The probability of flooding by the 
AEP0.01 event can be evaluated, consistent with the assumptions that have been 
defined by the set of decisions for this application. 
 
 
 

Fig 2 Uncertain AEP0.01 flood extent map at Mexborough overlain onto Google Maps. 

 
 



CONCLUSIONS 
 
The assessment and mapping of flood risk involves many different sources of 
uncertainty.  Many of these sources of uncertainty involve epistemic uncertainties that 
are not necessarily easy to represent statistically. This can create problems for 
communication between analyst and users when uncertain flood risk maps are being 
prepared. It has been suggested in this paper that one way of facilitating this 
communication is to use framework of Guidelines for Good Practice within which sets 
of decisions form the basis for interaction (the translationary discourse) between 
analyst and users.  An example application of the approach to flood risk mapping at 
Mexborough, Yorkshire, conditioned on observations for the 2007 flood is given. An 
essential feature of the approach is that the decisions must be recorded so that they are 
available for later evaluation and revision. The Catchment Change Network (see 
www.catchmentchange.net) is intending to develop this approach in the flood risk and 
other water management areas.    
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