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Abstract A stochastic modelling framework for identifying groundwater well fields is 
presented, which combines prior physical knowledge of dynamic groundwater well field 
systems with available information embedded in data. The model is a conceptual stochastic 
model, formulated in continuous-discrete state space form that facilitates a direct physical 
interpretation of the estimated parameters. The parameter estimation method is a 
maximum likelihood method, and the model parameters are validated by applying 
statistical methods using all the available data. The statistical tools are used to identify the 
deficiencies in a model that is considered too simple. Even though the predictions seem 
adequate, statistical methods show that the model needs to be extended to be able to 
provide accurate predictions for the groundwater level in all wells. 
Keywords groundwater; well field model; stochastic differential equations; grey-box model; prediction; parameter 
estimation; maximum likelihood method 
 
 
INTRODUCTION 
 
It is essential to ensure high quality drinking water in the future, which then calls for 
reliable operation and management of the groundwater resources at well fields. One of 
the foundations of the groundwater resource management is the mathematical model 
that describes the behavior of the aquifer penetrated by one or several wells. For 
control, optimization and forecasting, the complexity of the mathematical expressions 
needs to be reduced to enable more rigid stochastic representation of the dynamics. 

The groundwater elevation in the well field varies in both time and space and is 
traditionally described by the governing equation for groundwater flow, which most 
frequently is facilitated by a deterministic partial differential equation (Anderson & 
Woessner, 2002). With multiple discharge locations in the well field the utility of the 
governing equation becomes highly complex. A popular approach for simplification is 
to consider a lumped parameter model where the partial differential equation is 
replaced by a finite set of ordinary differential equations in state-space form, which 
then introduces a set of state-space variables describing the dynamics of the well field. 
The state-space model is formulated using all the available prior physical knowledge, 
which include the known physical characteristics of the considered system and any 
auxiliary processes connected to the well field. This approach disregards any 
stochasticity related to the variation in time and space with a serious drawback of 
obtaining a reasonable parameterization. The total model is often characterized by 
having a large number of parameters and due to unavoidable idealizations, 
simplifications and unknown parameters, it is difficult to predict the accuracy of the 
total model. This modelling approach is often referred to as a white-box approach, 
since the model structure is completely transparent and the variation in the available 
data is neglected. 
 On the contrary is the black-box approach where the model is formulated by only 
considering the available well field data and statistical methods are applied to reduce 



and validate the structure and the parameterization for the groundwater well field. The 
used of statistical methods enables a possibility for using rigorous stochastic 
dynamical models which then provide methods for predicting the uncertainty of the 
model predictions. However, the data is sampled at discrete time and a drawback of the 
discrete time formulation is that information about the physical parameters is partially 
hidden, and due to measurement errors or limitations in model flexibility, a reasonable 
continuous time model cannot be obtained.  
 It is desirable to obtain a modelling approach that reduces the gap between the 
conventional models based on physical characteristics and the pure statistical discrete 
time approach. Using formulation and estimation method, where the parameterization 
is kept in continuous time, a continuous time stochastic model is obtained where the 
estimated parameters do have a direct physical interpretation. Hence, in relation to the 
well field model any knowledge of physical constants and water balance relations can 
be exploited to improve the parameterization. This modelling approach is referred to as 
the grey-box approach, since being a combination of the other two approaches.  
 This paper presents a formulation and estimation of a simple continuous time 
stochastic model for the groundwater well field that explicitly describes how the 
measurements and model errors enter into the model, and, due to continuous time 
formulation, the model facilitates a direct physical interpretation of the estimated 
parameters. Based on the proposed method it is demonstrated that the rather simple 
continuous time stochastic model constitutes an operational description of the spatio-
temporal variation for simulations and predictions for the considered groundwater well 
field. 
 
 
CONTINUOUS-TIME STOCHASTIC MODEL FOR GROUNDWATER  WELL 
FIELD 
 
 
By considering the lumped parameter approach in state-space form, represented by a 
finite set of ordinary differential equations (ODEs), the translation into a set of 
stochastic differential equations (SDEs) is often a rather straightforward procedure. 
This is usually obtained by replacing the ODE models with the SDE models, which in 
addition also includes one or more algebraic equations describing how measurements 
are obtained at discrete time instants. Most often the models are formulated as 
continuous-discrete time state-space models and in its most general form it is written 
as 
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standard Wiener process is a continuous stochastic process with stationary and 



independent Gaussian time increments, which have the mean value zero and a 
covariance S equal to the magnitude of the increments (Jazwinski, 1970). Equation (1) 
is called the system equation whereas equation (2) is the observational equation. 
 The first term on the right side of the system equation is usually called the drift 
term, since it represents the physical structure of the system, determined and formed 
from the system of ordinary differential equations. Hence, any prior physical 
knowledge regarding the physical structure is included in the drift term where the 
parameters provide some physical interpretation of the system. Furthermore, the 
physical characteristics of the drift term are expressions most hydrogeologists are 
familiar with from formulating the traditional groundwater flow models. 
 The second term on the right side of the system equation is the diffusion term of 
the SDE model, which provides a suitable interpretation of the errors that exist due to 
the fact that the mathematical model is often not describing the true process exactly. 
However, the gap between the true process and the model should be reduced and by 
estimating the diffusion in the model, any unrecognized phenomena or unmodelled 
inputs can be detected and directly or indirectly considered in the model. Frequently is 
this discrepancy related to some specific state description in the model, and by 
extending this particular state description by additional state variables, more generic 
methods is obtained for systematic improvement of the model. 
 The observation equation (2) then relates the discrete time observations to the state 
variables at time points where observations are available. When determining unknown 
parameters of the model from a set of data, the model equations in (1) and (2) enables 
flexible estimation that can account for varying sample times and missing observations 
in the data series. The model provides a separation between the process noise and the 
measurement noise, which allow the parameters to be estimated in a prediction error 
setting, using statistical methods, the maximum likelihood method. 
 
 
PARAMETER ESTIMATION 
 
A solution to the well field prediction problem is to optimize a set of parameters, such 
that the model for the groundwater levels in the well field sufficiently fits the available 
data. The most direct terminology is to minimize the error between the model output 
and the observed output for the well field. For such an objective, mainly two 
estimation methods have been applied for optimizing the parameters in hydrological 
studies; the Output Error method (OE) and the Prediction Error method (PE).  
 The OE method minimizes the sum of squared simulation error and is applied for 
white-box models with well described physical characteristics, without considering 
variation in the available data. The parameters estimated by the OE method are, in 
general, not provided with any uncertainty. Furthermore, the OE method can only be 
considered for offline estimation, i.e. the estimates are only depending on the initial 
values; for online estimation the state estimates are updated for every time instants. 
The PE method seeks for minimizing the sum of squared one-step prediction error to 
obtain the best fitted model for the groundwater level in the well field, and the PE 
method includes both offline and online estimation. Moreover, the PE method also 
provides an uncertainty for the estimates, which is well suited for short-term 
predictions.  
 Given the model structure in (1) and (2), the unknown parameters can be 
determined by finding the parameters that maximize the likelihood function of a given 
sequence of measurements, i.e. by the Maximum Likelihood (ML) method. From 
probability theory the rule of independent probabilities can be applied to express the 



likelihood function as a product of conditional densities, and by representing the 
measured sequence by [ ]
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To obtain an exact estimation of the likelihood function, the continuous-discrete 
filtering problem needs to be solved, and the initial probability density function 

)( !kyP  must be known and parameterized, and all subsequent conditional densities 
must be determined to successively solve Kolmogorov's forward equation (Kloeden & 
Platen, 1999)  In practice, however, this approach is not computationally feasible and 
an alternative is required. Since the SDE's in (1) are driven by a Wiener process, which 
has Gaussian increments, the conditional densities can be approximated by Gaussian 
densities. For linear models the Kalman filter provides the exact solution for the 
filtering problem, and for nonlinear models the problem is approximated by applying 
the extended Kalman filter (Madsen et al., 2004). 
 The Gaussian density is completely characterized by its mean and covariance, 
which are denoted by { }!,ˆ
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and thereof, the parameter estimates can be determined by conditioning on the initial 
values and solving the optimization problem 
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With the unknown parameters of the model estimated by the ML method, along with 
corresponding standard deviations, statistical tests can be performed to check if the 
parameters are significantly different from zero, which then indicates that some 
improvement is needed for the model structure. The parameters of the diffusion term in 
equation (1) are included in the ML estimation. 
 One of the main aspects of the modelling framework is its predictive ability, which 
implies that the output errors are examined for any systematic pattern for further 
extension of the model, as well as investigation of the sample autocorrelation function 
and sample partial autocorrelation function of the residuals to detect if two or more 
consecutive residuals are dependent or, in contrast, can be regarded as white noise 
(Kristensen et al., 2004). Correlation between the residuals indicates that the model is 
not adequate for prediction, since systematic errors are detected in the model that can 
affect the model prediction drastically. An adequately parameterized model is 
characterized by having uncorrelated residuals (Madsen, 2008). 
 
 



AN EXAMPLE 
 
The following is an example to illustrate the important features of the continuous time 
stochastic model described above; the lumped model for the well field, the parameter 
estimation and model prediction. The well field has three pumping wells, which all 
pump from the same aquifer. These three wells are a part of water distribution network 
with 21 operating wells attached, where all wells are pumping from the same aquifer. 
The total well field is divided into three groups due to geographical location. Here, one 
of these is studied.  
 The conceptual model is sketched in Fig. 1a, showing the three wells located on a 
straight line, that is, well No. 2 is located on the line between well No. 1 and well No. 
3. This simplifies the model by assuming that drawdown in well No. 3 when pumping 
from No. 1 is detected in well No. 2 as well. This assumption is also valid when the 
water level changes in well No. 1 when pumping from well No. 3.  
 

Fig. 1 Conceptual model for a well field with 3 operating wells: (a) The classical 
illustration of the model. (b) The lumped  model represented as number of linear 
reservoirs. 

 
 The objective is to predict the piezometric heads in the wells when pumping from 
a confined aquifer. However, since the lumped parameter model is considered for the 
model structure, the parameters are lumped vertically, from datum to the piezometric 
head, and the suggested model for the groundwater well field is expected to consist of 
a number of reservoirs where the water levels in the reservoirs are the state variables in 
the state-space representation (Jacobsen et al., 1997). As illustrated in Fig. 1b, the only 
measured state variables are the water-levels in the wells. The water levels between 



any two wells, and at the boundaries, are unobserved state variables, which will be 
estimated in relation to the observations in its two adjacent operating wells. The 
behaviour of the water table between two operating wells is nonlinear, but by assuming 
several linear reservoirs for the water table to represent the flow from one well to 
another, the water table can be linearly approximated. The water level, or the 
reservoirs, in the unobserved states does never dry out, indicating that at least one of 
the unobserved reservoirs between every two observed wells is infiltrated with 
additional water.   
 Considering the states as given in Fig. 1b, and with the index i indicating the state 
of interest, the suggested stochastic state space model, as in equation (1), is represented 
as follows: The pumping wells are the observed states (h3, h7 and h11 in Fig. 1b) and 
their dynamics are described as 
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with K assumed to be the lumped hydraulic conductivity and Ai is considered as the 
areal closest to the well directly affected by the discharge. Here, and in all the 
following system equations for the well field, the σi values represent  the variation of 
the system noise for state description i , where i=1,...,13, and corresponding noise term 
dωi is assumed to be an independent standard Wiener process, and also assumed 
independent from the measurement noise in the observation equation. 
 The state variables illustrating the recharge to the aquifer between operating wells 
(h5 and h9) become 
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The same goes for the recharged boundary states (h1 and h13), except for one term is 
neglected in each case; for h1 the first term in the square brackets is omitted, and for 
h13 the last term inside the square brackets. S is the storage coefficient for the lumped 
flow and Li is the estimated size of the reservoir i. hinf is the estimated boundary 
condition, i.e. the water level approaches the undisturbed water table if no pump is 
active in the well field for a reasonably long time. The term Kinf is the estimated 
resistance for the flow from the boundaries to the reservoirs. 
 For all the remaining states, the intermediate states of the water level in the 
reservoirs is represented as 
 

)()()(
2

)( 11 tddtth
SL

K
th

SL

K
th

SL

K
dh

iii

i

i

i

i

i

i
!"+#

$

%
&
'

(
+)= +)   

 
There are three observation equations since there are three measured water levels in the 
wells, i.e. 
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where the e1, e2, e3, correspond to the measurement noises. 
 The parameter estimation are shown in Table 1. The estimation for the hydraulic 
conductivity and the storage coefficient are reasonably estimated, but compared to 
results from a pumping test for the aquifer the estimates are orders of magnitudes 
higher. This is explained by the fact that these two estimated parameters are lumped 
vertically and correspond to routing of water and storage in the aquifer, as well as all 
the layers above it. Therefore, it is impossible to compare results from pumping tests 
and the lumped estimates. The two estimated values, K and S, correspond to the 
individual reservoir in the lumped model, where K is assumed as routing coefficient 
per length unit and the storage S is considered as the total storage per length unit in 
each reservoir. Model extension to take consideration to the different layers in the 
conceptual model can be implemented into the introduced stochastic model, but no 
such attempt is made in this particular study.  
 
Table 1 Estimated values for several parameters in the stochastic well field model. K:[m min-1], S [-]; Ai 
[m2]; hinf [m]. 

 
 By performing t-tests the parameters can be checked for being significantly 
different from zero. Status for significance of each parameter is displayed in the last 
column in Table 1, and it shows that the variances for the system noises, regarding the 
boundary conditions, are not significant (σ1 and σ13). For extending the model further, 
focus should be on the state descriptions for the boundary conditions, since from the 
parameter estimation it can be concluded that these states are not entirely fulfilled with 
the present description. The most probable cause is related to the other two groups of 
wells in the total well field and to get a better understanding of the boundary 
conditions for this small group of three wells, correlation to the other groups need to be 
exploited. 

Parameter Pumping Test Estimate Std. dev. Significant

K 0.0420 1.090 0.0254 YES

S 0.0012 2.083 0.3625 YES

- 10.253 0.7147 YES

- 5.481 0.2893 YES

- 6.264 0.5335 YES

- 7.141 0.3642 YES

- 0.038 0.0335 NO

- 0.357 0.0485 YES

- 0.030 0.0159 YES

- 0.291 0.0247 YES

- 0.165 0.0186 YES

- 0.215 0.0192 YES

- 0.018 0.0105 NO

- 0.000 0.0003 NO

- 0.001 0.0005 NO

- 0.002 0.0009 NO

A
3

A
7

A
11

h
inf

_
1

_
3

_
5

_
7

_
9

_
11

_
13

S
1

S
2

S
3



 It is interesting to see how adequate the model is to predict the water level in the 
three wells. Fig. 2 displays a comparison between the observations (solid line) and 
corresponding model output (dashed line) for the pumping wells. Although it appears 
as the prediction follows the observations rather well, there is a clear difference for all 
three wells where the greatest deviation is in relation to abrupt changes in the water 
level, i.e. when a pump is switched on or off. Fig. 3 shows that the difference between 
the model and the observations is serially correlated, which indicates that an improved 
model should be obtained by addition of a reservoir between operating wells.  

Fig. 2 Comparison between measurements (solid line) and predictions (dashed line) 
for  all operating wells. 
 

Fig 3 Autocorrelation functions for the residuals for all operating wells 
  

This example shows how the presented lumped stochastic model can be used for 
parameter estimation and prediction for a groundwater well field. It is also shown how 
statistical methods can be applied to detect deficiencies in a model, as well as suggest 
which state descriptions require improvement. By optimizing the parameters with the 
prediction error method, the model is able to predict the water levels in the wells 
within the limited region, but from a statistical point of view an improved model is 
need to obtain more adequate results.  
CONCLUSION 
 



A continuous time stochastic model for a groundwater well field has been presented. 
This modelling framework combines the best from deterministic and stochastic 
modelling for identification of models, for model-based control of groundwater well 
fields. The model basis are the state descriptions in the stochastic state-space model, 
derived from stochastic differential equation models, which are just as appealing as 
ordinary differential equation models from an engineering point of view. The 
maximum likelihood method provides uncertainty to the estimates, which is highly 
important for performing model validation by means of statistical tests and residual 
analysis. Based on these methods it has been demonstrated that the rather simple 
stochastic model can be constructed to give sufficient results for the physically 
interpretable parameters. However, statistical tests showed that the model requires an 
extension to compose an operational description of the spatio-temporal variation of the 
groundwater well field, which eventually will improve the groundwater level 
predictions in the well field. 
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