HOW TO COMBINE INDUCTIVE AND DEDUCTIVE APPROACHES TO PREDICTION IN UNGAUGED BASINS

Pablo F. Dornes

Facultad Ciencias Exactas y Naturales Universidad Nacional de La Pampa, Argentina pablodornes@exactas.unlpam.edu.ar

IAHS - P3: Putting PUB into Practice Canmore, AB, Canada 11-13 May 2011

PHILOSOPHIES OF MODELLING

Inductive Approach – Top Down

• Analyses processes based on data (e.g. dominant responses) at larger scales (e.g. basin) and then, if needed, make inferences about processes at smaller scales.

Deductive Approach – Bottom-Up

• Analyses processes at smaller scales using physical laws, and then extrapolates the process at larger scales using aggregation techniques.

PHILOSOPHIES OF MODELLING Inductive Approach – Top Down

- Model structure is defined at the level of interest and it is inferred from data.
- Representation of basin processes → finding the simplest descriptions of the dominant responses of the system that are supported by both the available data and physical understanding.
- Used to describe the hydrological response at long temporal scale and large spatial scale (e.g. annual time and basin scale) and progressively narrowing down to processes at smaller scales.
- Reduce data requirements and limit model complexity
- Simple 'parsimonious' models \rightarrow Lumped & Conceptual
- Difficulties in capturing all important processes
- Too "parsimonious" to properly describe heterogeneity

PHILOSOPHIES OF MODELLING

Deductive Approach – Bottom Up

- Model structure is preconceived
- Based on deterministic mathematical equations founded on scientific laws
- Assumes that conceptualisations of individual processes are equivalent for the overall model domain.
- More realistic \rightarrow physically based structure
- More complex models \rightarrow able to describe different processes at different scales in time and space.
- Problems with parameter identifiability and with the different sources of uncertainties
- Too complex to support engineering and management decisions.

HYDROLOGICAL MODELS

- Plethora of models
 - Lumped or Distributed
 - Deterministic or Stochastic
 Statistical
- Conceptual
- Empirical

 - Physically Based

- Nonlinearity
 - Some Processes \rightarrow still inadequately parameterised
 - Some Parameters \rightarrow still conceptual
- Scaling
 - Lack of a scale consistent process descriptions
- Uniqueness Equifinality
- Identifiability problems. Different parameter sets \rightarrow similar performance
- Uncertainty
 - Predictions constrained by data, model structure, and parameters

MODEL COMPLEXITY – DATA - MODEL PERFORMANCE

0.1 L

D100st

D 100

с

D100w

w 12

10

30

Time (days)

20

40

50

60

70

SCALING ISSUES

• Hydrological process at a range of scales

Small length scales area associated with short times

 Large length scales area associated with long times

 Not always happens

 Infiltration excess → Point scale phenomena
 Saturation excess → Lateral flow → Area associated with the process

Mismatch between scales:

- Observation scales
- Process scales

Scaling (up-down) Transference of information

Modelling scales

 Scaling is limited by spatial heterogeneity and variability in hydrological process environments

Definition → **Effective parameters**

•This situation becomes even more important in cold regions areas due the ungauged nature of arctic and subarctic environments.

• New strategies that combine detailed process understanding with an overall knowledge of the system are needed.

STUDY AREA

Wolf Creek Research Basin 60° 31'N, 135° 07'W Area: 195 km²

Granger Basin 60° 31'N, 135° 07'W Area: 8 km²

ISSUES IN SUBARCTIC ENVIRONMENTS

Snow :	Topography
Reflects solar radiation	• Exerts a control in snowpack and soil
 Insulates the ground 	varying incoming solar radiation and
Stores water and nutrients	temperature.
Otores water and nutrients	Control snow redistribution processes
 Has high temporal and spatial variability 	
Vegetation : • Traps falling and wind-blown show	Permafrost
Vegetation : • Traps falling and wind-blown snow	PermafrostAffects snowmelt runoff generation
Vegetation : • Traps falling and wind-blown snow • Masks underlying snow	PermafrostAffects snowmelt runoff generationSoil energy and mass balance
Vegetation : • Traps falling and wind-blown snow • Masks underlying snow	PermafrostAffects snowmelt runoff generationSoil energy and mass balance
 Vegetation : Traps falling and wind-blown snow Masks underlying snow 	 Permafrost Affects snowmelt runoff generation Soil energy and mass balance
 Vegetation : Traps falling and wind-blown snow Masks underlying snow 	PermafrostAffects snowmelt runoff generationSoil energy and mass balance

SCALING ISSUES IN SUBARCTIC ENVIRONMENTS

MODELLING OBJECTIVES

- Definition of an appropriate **modelling strategy** in complex subarctic environments.
- Definition of an optimum representation of the spatial heterogeneity that would allow the scaling from point scale observations to catchment scale models in complex subarctic environments.
- Effects of spatially distributed solar forcing and initial snow conditions.
- 3. Identification of **stable model parameterisations** using a landscape-based approach.

MODELLING METHODOLOGY

- Distributed and Physically Based \rightarrow capture processes dynamics
- Link mass and energy balances \rightarrow dominant structures in each of these different contexts are different

Combination of Top-Down and Bottom-Up Approaches

MODELLING METHODOLOGY

Inductive Approach

basin segmentation

Landscape based

Topography – vegetation

- Snow accumulation regimes
- Blowing snow transport
- Snowmelt energetics
- Snow interception
- Runoff generation/response

Deductive Approach

process descriptions

Detail process understanding In cold regions research basins (e.g. WC, TVC, prairies)

MODELLING METHODOLOGY

Three models:

- Small-scale physically based Hydrological Model (CRHM)
- Land Surface Scheme (CLASS)
- Land Surface Hydrological Model (MESH)

LAND SURFACE HYDROLOGICAL MODELS

LANDSCAPE HETEROGENETY

SNOWCOVER ABLATION AND SNOWMELT RUNOFF USING CRHM

18

LAND SURFACE SIMULATIONS

Snowcover ablation using 1D landscape based CLASS simulations

SNOW COVER ABLATION USING CLASS

20

INITIAL CONDITIONS AND SOLAR FORCINGS

North facing slope

HYDROLOGICAL LAND SURFACE SIMULATIONS

- Snowcover ablation and Snowmelt runoff using MESH Spatial representation based on the GRU approach
- Definition of GRU based on:
 - Topography and vegetation cover

Grid size 3 km x 3 km

BASIN STREAMFLOW SIMULATIONS

Wolf Creek Reserach Basin

BASIN STREAMFLOW SIMULATIONS

Wolf Creek Reserach Basin

DISTRIBUTED VALIDATIONS OF STREAMFLOW SIMULATIONS

DISTRIBUTED VALIDATIONS OF SNOWCOVER ABLATION

Wolf Creek Reserach Basin

PREDICTIVE UNCERTAINTY

0051 2 3 4 Kilometers

TVC Basin 68° 45'N, 133° 30'W Area: 63 km²

LANDSCAPE BASED APPROACH TO REGIONALISATION

LANDSCAPE BASED APPROACH TO REGIONALISATION

29

CONCLUSIONS

- The combination of deductive (BU) and inductive (TD) modelling approaches is an useful methodology for effectively representing and conceptualising landscape heterogeneity in sub-arctic environments.
- It is an modelling approach that learn from the capabilities of the BU in describing detail processes to somehow simplify landscape heterogeneity using an holistic TD approach.
- Landscape-based parameter can be transferred to similar landscapes in regional basins if physically based models are used, therefore reducing the predictive uncertainty of hydrological and LSS models in ungauged basins.
- Explicit landscape representations improve model predictions.
- Inadequate or unrepresentative initial snowcover conditions and forcing data caused unsatisfactory model predictions.

CONTRIBUTIONS

- Research implications:
 - Development of a new modelling strategy for simulating snowcover ablation and snowmelt runoff in subarctic mountainous environments.
 - Verification that the representation of melt based on average energy flux, snow state, and flat-plane conceptualisation is not always appropriate.
- Practical Implications:
 - The need for incorporation of blowing snow process to properly set the initial snow cover conditions.
 - The need for incorporation of differential forcing
 - Landscape basin segmentation / landcover based parameterisation necessary to reduce predictive uncertainty

MODELLING PHILOSOPHY

© 2009 Vincenzo Arrichiello

