Group 1: Semi-arid and arid regions

Name	Institution
Anil Gupta	Alberta Environment
James McPhee	Univ. of Chile
Werner Herrera	Alberta Environment
Chiadih Chang	Alberta Environment
Terry Chamulak	Alberta Environment
K. Kumaraswamy	Bharathidasan Univ.
Zhentao Cong	Tsinghua Univ.
Pablo Dornes	Univ. de Las Pampas
Sillah Kargbo	Alberta Environment
Naba Adhikari	Alberta Environment

Wednesday: how can the various approaches for hydrol. prediction be implemented in semi-arid and arid regions given the availability of met. and catchm. data and current understanding of hydrology

A few basic definitions...

Semi-arid: a (sub-polar) region that receives precipitation at or below potential evapotranspiration

Warm

Approaches

- Empirical (e.g SCS CN and, yes, the rational method)
- Statistical (frequency analysis, autoregressive models, etc.)
- Hydrologic models
 - conceptual
 - physically based

What is a prediction?

- Streamflow in space and time
- Groudnwater levels, available volume
- Soil moisture

– Fluxes and states

Some considerations specific to semi-arid and arid climates

- Groundwater usually very important if not unique water source
- Can't separate short term from long term
- Most water comes from other climatic regions (either natural or man-made)
- Contributing area highly variable between events or years.

... more considerations

- Extreme variability in time and space of meteorological forcings (related question: is remote sensing an approach or a data source?)
- surface water/groundwater interaction

About approaches: 1) empirical methods

- OK for small scale, short term: it is usually for these conditions that these methods are developed, in the first place
- It might be possible to valide, improve, adapt them to local conditions when possible
- Not OK for long-term, large scale problems because of nonlinearity and moisture deficit uncertainty

2) Statistical methods (regression, geostatistics, stochastic time series, etc.)

- OK for large scale and long-term, at annual time steps
- Reasonable performance for data-gap filling (hindcast)
- Regionalization encouraged (remember: data rich areas)
- OK for capturing time variability, but caution required due to nonstationarity

2) Statistical cont'd.

- In arid regions: problems at the tails because distributions quite skewed
- Geospatial techniques
 - OK for temperature, radiation
 - Not OK for short-term precipitation (events),
 OK for long-term

3) Hydrologic models: conceptual

- e.g. HSPF, SWAT, HMS
- NOT for GW evaluation at local scale nor short term
- Inadequate for surface/GW interactions
- Poor performance in flashy streams
- Practical for planning purposes; caution when transfering parameters to ungauged basins

4) Hydrologic models: physically based

- e.g. MIKE-SHE, MESH, WADFLOW, CRHM, MODFLOW (?)
- Data hungry -> OK if data rich (related: is it possible to have a data rich semi-arid/arid region?)
- Energy balance VERY important in our regions
- Usually flexible in their implementation (modular nature)

4) Physically based, cont'd.

- Continuous simulation: variability in contributing areas
- Require dedicated and ad-hoc data collection campaigns -> scaling issues