Tropics & Sub-Tropics

How can predictive approaches be improved: Data Sparse Situations

- 1. Protocol for catchment function diagnostics and model setup.
- Use of a decision tree as a preliminary stage to modelling.
 - Form of decision tree?
- Sequences in modelling (posssibly iterative)
 - Basic process understanding.
 - Data assessment and compilation.
 - Model choice.
 - Model parameterisation.

2.1 Basic process

Available information to assist:

- - Topography and general catchment conditions (Google Earth & others).
 - Topography (slopes and elevations).
 - Lands use data & soils data (FAO)
 - Climate data (various sources).
 - Regional streamflow data (GRDC).
 - Satellite imagery at different times of the year.
 - Links to data rich regions of a similar type.
- How to interpret this information?
 - Identifying the differentiating processes.
 - Identifying major processes & linkages.
 - May need some guidelines for this process.

2.2 Examples of interpretation

- Identifying main processes and flow paths.
 - Clues for GW influences in stream flow data.
 - Landcover and topographic data to identify existence and extent of wetlands & floodplains.
 - Slope variations and drainage structure.
 - Vegetation data to help soils interpretation, interception and evaporation dynamics (NDVI).
 - Homogeneous versus mosaic of veg. types helping to inform spatial variation of processes.

2.3 Adequate process understanding?

- Informed by objectives of the study (?).
- Yes
 - Move onto next phase.
- No
 - Focused field campaign.
 - Focused on process understanding gaps.
 - Always limited by available resources.
- Finally should be trying to identify uncertainties in process understanding.

3.1 Data assessment & compilation

- Physical catchment property data:
 - Appropriateness of information:
 - E.g. soil types and depth
 - Spatial variations with respect to scale of modelling.
- Hydrometric data:
 - Precipitation, evaporation, etc.
 - Spatial and temporal resolution of available data.

3.2 Additional data required?

- How to determine if additional data are required?
 - Informed by end purpose and objective.
 - Informed by model choice (chicken & egg problem).
- Can existing data be processed further?
 Disaggregation for example.
- How to determine what data are required?
 - Progressive removal of data in data rich regions and assessment of model performance.

3.3 How to get additional data

- Focused field campaign (short term):
 - Collecting essential data.
 - Also informed by uncertainties in process understanding.
 - Substituting space for time.
- Initiate longer term additional monitoring:
 Design informed by preliminary model results.

4.1 Model choice

- Informed by:
 - Process understanding.
 - Special processes needed for inclusion:
 - Spatial/temporal resolution.
 - SW/GW interactions.
 - Stream flow routing.
 - Wetlands and lake storage.
 - Development impacts.
 - Data availability.
 - Purpose and objectives of modelling.

5.1 Model parameterisation

- What is the best approach?
 - Should be linked to process understanding.
 - Can be achieved in different ways.
 - Donor catchments (similarity approach).
 - Regionalisation.
 - Direct estimation from physical basin properties.
- How to include uncertainty?
 - Must be included in all approaches.
 - Use of constraints and feedback loops to reduce uncertainty ('valibration').

5.2 Including uncertainty

- Ensemble approach
 - Based on expressions of uncertainty in both parameter estimations and hydrometric data.
 - Process uncertainty feeds into parameter uncertainty.
 - Assumption that we do not know the real answer.

5.3 Constraints & their use

- Regionalised observed data used to establish hydrological signatures.
- Limited field campaign data.
 - Identifying boundary conditions.
- Feedback loops to parameter estimation:
 - Identify behavioural parameter sets and reduce the uncertainty ranges.