Using Information from Data Rich Sites to Improve Prediction at Data Limited Sites

A Challenge for Hydrologic Prediction from Mountain Basins:

DANNY MARKS

Northwest Watershed Research Center USDA-Agricultural Research Service Boise, Idaho USA

The Problem with Hydrologic Prediction in Western North America:

- Nearly all Mountain Hydrology is "ungauged"
- Mountain Hydrology is complicated...
- The Climate is Unstable...
- Statistical Relationships (rainfall/runoff) are unreliable...

We have spent 50 years perfecting the *"technique"* of hydrologic forecasting;

It is time for us to address hydrology and hydrologic prediction as a science.

 Prediction based on understanding of, and interaction between meteorological, land surface and hydrologic processes

Re-evaluate our measurement strategy: capture landscape gradients and "end-members"

• Understand and Model distributions of hydro-climatic parameters across complex landscapes

Re-invest in basic hydrologic and hydro-climatic process research

Outdoor Laboratories:

High quality, long time-series data record

Processes and distribution characterized

• Uncertainty analysis (system is "over-measured")

Only a few locations in the world where this can be achieved...

RCEW (239 km²):

- 32 climate stations
- 36 precipitation stations
- 5 EC systems
- 14 weirs (nested)
- 6 soil microclimate stations
- 4 hill-slope hydrology sites
- 4 instrumented catchments
- 3 instrumented headwater basins:

USC (0.25 km², 186m relief) ephemeral, groundwater dominated, annual precipitation 300-500mm

<u>RME</u> (0.38 km², 116m relief) perennial, surface water dominated, annual precipitation 750-1000mm

Johnston Draw (1.8 km², 380m relief) ephemeral, rain-snow boundary, annual precipitation 500-600mm

ටින

Predicting Hydrologic State & Storage:

- Snow
 SWE
 Depth
- Soil Moisture
- Ground Water

Fluxes:

 Evaporation, Transpiration, Sublimation
 Streamflow

Critical Forcing Parameters:

Precipitation

 Volume
 Distribution
 Phase (rain/snow)

Wind

 Turbulent transfer
 Snow redistribution

Temperature & Humidity

 Hydrology is sensitive to humidity
 Snow is VERY sensitive to humidity

Land Cover Characteristics:
 Soils & Groundwater
 Vegetation

An Unstable Climate:

Changing Climate – Hydrology Relationship

Precipitation
 Volume
 Phase

Evaporation – Water Stress

Changes in the Rain/Snow Transition Elevation 1968-2006 Water Years

Precipitation Distribution:

Persistent Patterns

Snow Distribution:

Wind

Topography

Canopy Structure

LiDAR-Derived Terrain & Canopy Sx: a measure of upwind exposure

Development Site: Reynolds Mountain East

USDA Boise, Idaho 83712 (208) 422 0700

Upper Sheep Creek:

Testing the precipitation distribution model

Upper Sheep Creek:

Measured and Modeled SWE WY2007

Upper Sheep Creek:

Measured and Modeled SWE WY2008

Can we transfer this to a larger basin?

Marble Fork Kaweah River 152 km² Elevation Range: 250 – 3650 m

Precipitation Distribution by Lapse Rate:

Marble Fork Kaweah River 152 km² Elevation Range: 250 – 3400 m

Annual Lapse Rate: 4 stations 450 – 2200 m 0.34 mm m⁻¹

Marble Fork:

Different **Distributions:**

> **Sometimes it** matters

lapse rate, Feb 2

lapse rate, Apr 2 1

lapse rate, Jun 2 1

ORTEWEST WATERSHED RESEARCE CENTER 800 Park Blvd., Suite 105 Boise, Idaho 83712 ISDA

d2S

Soil Temperature and Moisture: Spatially and Temporally variable Limited reference data

RS spatially very coarse resolution

Continuous (hourly) Soil Moisture Measurement Sites, RCEW (2010)

35 sites: Profiles 20 Near-Surface (5cm) AMSR Elevation (m) **15 Profile (5 – 250cm)** 22 NP tubes (200cm) C 2 Kilometers 127

Near Surface Soil Moisture Dynamics Across 1000m of Elevation (CY2010)

Soil Temperature Dynamics at two sites, WY1993

Comparison of soil temperature dynamics at Nancy Gulch (Site 057, 1410m) and Reynolds Mountain(Site 176, 2097m) during 1993.

> Snowcover Duration:

Site 057: 31 days

Site 176: 183 days

31 years (1978 – 2009) of Monthly NP Soil Moisture Measurements

25 Site 176: 2097m Soil H₂O 20 S_{R,107} (cm) increases with 15 elevation; 10 5 3 month shift in 0 30 peak soil H2O; 25 Lower Sheep Creek Site 127: 1652m Monthly average 20 +/- 1 std dev $S_{R,107}$ (cm) **Dominated by** 15 precipitation 10 (snow vs. rain); 5 ο 30 25 Nancy Site 098: 1410m Monthly average 20 +/- 1 std dev S_{R,107} (cm) 15 10 5 0 30 25 Flats Monthly average Site 057: 1188m S_{R,107} (cm) 20 +/- 1 std dev 15 10 5 Ο N D J F м Α м J

30

0

0

0

S

Α

Reynolds Mt

Monthly average +/- 1 std dev

If we can do all this, then this is possible:

Dobson Creek (14 km²)

889m relief 2 Precipitation - climate sites, 10m DEM, LiDAR veg map

Simulation Area: (67 km²)

Scaling up to Tollgate

Distributed Snow Accumulation: 2006WY

Dobson Creek Watershed Simulation: 10m² Grid Cells 893 x 747 pixels (67 km²)

USDA 800 Park Blvd., Suite 105 Boise, Idaho 83712 (208) 422-0700

25 Dec 2005 11 hours

RCEW: Dobson Creek (14.0 km^2)

7-day Mixed **Rain/Snow Event:** 12/25 - 31/2005

Computationally Achievable: 10m DEM, 60 km²: 600,000 cells 30m DEM, 600 km²: 670,000 cells 100m DEM, 6,000 km²: 600,000 cells

NORTHWEST WATERSHED DESEARCH CENTER USDA 800 Park Bivd., Suite 105 Boise, idaho 83712 (209) 422-0700