How to Apply Process Information to Improve Prediction

Jim McNamara Boise State University Idaho, USA

Improved prediction and improved process understanding are mutually reliant

Modified from Mukesh Kumar

Predicted States Resolution: Data Requirement: Computational Requirement: Perceived Intellectual Value:

Modified from Mukesh Kumar

	Right for	Wrong for Right
Outcome:	Wrong Reasons	Reasons
History:	Mathematical	Process
	Lumping	Understanding
Future:	?	Process
	•	Understanding

In Defense of Hydrologic Reductionism

... an approach to understand the nature of complex things by reducing them to the interactions of their parts...

...a philosophical position that a complex system is nothing but the sum of its parts, and that an account of it can be reduced to accounts of individual constituents ...

as

Berkely Catchment Science Symposium 2009

My Past: In Defense of Reductionism

- Newton was right
- Model failures result from poor characterization of heterogeneous landscapes leads to
 - No emergent properties
- Our community struggles to identify grand, overarching questions because...there are no grand unknowns
- Hydrology is a local science

The Response

Ciaran Harman, Catchment Science Symposium, EGU 2011

Jim McNamara's defense of reductionism

Straw man

- Newton was right
- Poor characterization of heterogeneous landscapes leads to model failure
 - No emergent properties
- Our community struggles to identify grand, overarching questions because... there are no grand unknowns
- Hydrology is a local science

The Response

Ciaran Harman, Catchment Science Symposium, EGU 2011

1. Mechanistic understanding of processes across scales

Catchments Lump Processes

Emergent Behavior

Decades of case studies have documented the many ways that water moves downhill Recent work has identified many **Physically Lumped Properties** that are manifestations of the **system** of states and fluxes

-A physical basis for lumped parameter modeling

Physically Lumped Properties (emergent behavior)

- Connectivity
- Thresholds
- Residence Time

Wet conditions Topography controls soil moisture

Dry conditions Soil/Vegetation controls soil moisture

Spatial distribution in soil moisture Tarawarra Catchment Western and Grayson (1998) Grayson and Bloschl (2000)

Physically Lumped Properties

- Connectivity
- Thresholds
- Inresholds
 Residence Time

Physically Lumped Properties

- Connectivity
- Thresholds
- Residence Time

Modified from Mukesh Kumar

Modified from Mukesh Kumar

Distributed Model,

Physically Lumped Model

History:	Mathematical Lumping	Process Understanding
Future:	Process Understanding	Physically lumped properties

How to Apply Process Information to Improve Prediction

- Retain the computationally efficiency and lumped philosophy of systems models
- Observe how catchments create physically lumped properties
- Replace mathematical lumping approaches with physically lumped properties
 - Use as validation targets
 - Build into new model structures

What do we do with this awareness?

Connectivity Thresholds Residence Time

Lump the lumps It's about Storage

P-ET-Q =dS/dt

Storage Connectivity Thresholds Residence Time

A Tale of Two Catchments

A Natural Storage Experiment

The Case for Storage

P-ET-Q =dS/dt

- The mechanisms by which catchments
 STORE water ultimately characterize the hydrologic SYSTEM
- Storage regulates fluxes (ET, Recharge, Streamflow)
- Storage is responsible for emergent behavior such as connectivity, thresholds, and residence time

A Natural Storage Experiment

P-ET-Q =dS/dt

- We should focus on Runoff Prevention mechanisms in addition to runoff generation mechanisms
- We should concern ourselves with how catchments Retain
 Water in addition to how they release water

The Storage Problem

- Storage is not commonly measured
- Storage is often estimated as the residual of a water balance

 Storage is treated as a secondary model calibration target

CUAHSI Catchment Comparison Exercise

Dry Creek, Idaho, USA Snowy, semi-arid, ephemeral

Girnock, Scotland, Rain, humid

Panola, Georgia, USA Rain, humid, perennial

Reynolds Creek, Idaho, USA Snowy, semi-arid, perennial

Gårdsjön, Sweden, Snow, ephemeral

Storage Zones

Snow Vegetation Surface Soils Bedrock

Storage Time Series by Direct Measurement

Storage-Discharge

tate Univ

McNamara et al., 2011

Storage-Discharge

McNamara et al., 2011

McNamara et al., 2011

McNamara et al., 2011

Improved storage characterization will lead to improved prediction

Reynolds Creek

Dry Creek

Precipitation

Distributed Soil Moisture Measurements - Aspect

Moisture and Aspect

Soils properties vary with aspect

Smith, T., in progress, MS Thesis

tate Unive

Smith et al., in review

North facing aspects retain more water than south facing aspects

More Storage on North aspects

Aspect-Insolation-Soil Carbon

 Soil organic carbon content increases with aspect and elevation

1000

1500

2000

2500

3000

Kunkel et al., in review Aspect (degrees)

All Charles State University

Geomorphology and Aspect

North facing slopes are steeper and shorter

Poulos et al., in review

Storage Capacity

 Rooted in the co-evolution of landscape form and hydrologic processes

- Responsible for catchment-scale emergent behavior – Physical Lumped Properties
 - Connectivity, Thresholds, Residence time

Our Modeling Experience

Soil Water Assessment Tool (SWAT)

Stratton et al., 2009

VERY Physically-Based 1D

Vadose Zone Journal ORIGINAL RESEARCH

Modeling the Water and Energy Balance of Vegetated Areas with Snow Accumulation

T. J. Kelleners,* D. G. Chandler, J. P. McNamara, M. M. Gribb, and M. S. Seyfried

The ability to quantify soil-atmosphere water and energy exchange is important in understanding agricultural and natural ecosystems, as well as the earth's climate. We developed a one-dimensional vertical model that calculates solar radiation, canopy energy balance, surface energy balance, snowpack dynamics, soil water flow, and snow-soil-bedrock heat exchange, including soil water freezing. The processes are loosely coupled (solved sequentially) to limit the computational burden. The model was applied to describe water and energy dynamics for a northeast-facing mountain slope in the Dry Creek Experimental Watershed near Boise, ID. Calibration was achieved by optimizing the saturated soil hydraulic conductivity. Validation results showed that the model can successfully calculate seasonal dynamics in snow height, soil water content, and soil temperature. Both the calibration and validation years confirmed earlier results that evapotranspiration on the northeast-facing slope consumes approximately 60% of yearly precipitation, while deep percolation from the soil profile constitutes about 40% of yearly precipitation.

VERY Physically-Based 1D

- Simulates Snow accumulation, melt, infiltration, and Bedrock infiltration with "NO" shortcuts
 - Over **70 equations** just for 1 dimension
 - NOT PRACTICAL
 - Allows us to determine the relative importance of physical controls
- Wavelength-dependent solar radiation
- Iterative canopy energy balance => T_{leaf}
- Iterative surface energy balance => T_{surface}
- Snow water flow
- Soil water flow
- Snow-soil-bedrock heat transport
- Snow-soil water phase change

Kelleners et al., 2010

VERY Physically-Based 1D

Root Mean Square Error: 20-38 % Modeling Efficiency: 0.65-0.86

Root Mean Square Error: 11-28 % Modeling Efficiency: 0.88-0.95

Very Physically Based – 3D

Special Section: Coupling Soil Science and Hydrology with Ecology

T. J. Kelleners* D. G. Chandler J. P. McNamara M. M. Gribb M. S. Seyfried

Modeling Runoff Generation in a Small Snow-Dominated Mountainous Catchment

Snowmelt in mountainous areas is an important contributor to river water flows in the western United States. We developed a distributed model that calculates solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow-soil-bedrock heat exchange, soil water freezing, and lateral surface and subsurface water flow. The model was applied to describe runoff generation in a subcatchment of the Dry Creek Experimental Watershed near Boise, ID. Calibration was achieved by optimizing the soil water field capacity (a trigger for lateral subsurface flow), lateral saturated soil hydraulic conductivity, and vertical saturated hydraulic conductivity of the bedrock. Validation results show that the model can successfully calculate snow dynamics, soil water content, and soil temperature. Modeled streamflow for the validation period was underestimated by 53%. The timing of the streamflow was captured reasonably well (modeling efficiency was 0.48 for the validation period). The model calculations suggest that 50 to 53% of the yearly incoming precipitation in the subcatchment is consumed by evapotranspiration. The model results further suggest that 34 to 36% of the incoming precipitation is transformed into deep percolation into the bedrock, while only 11 to 16% is transformed into streamflow.

Abbreviations: EF, modeling efficiency; LAI, leaf area index; SWE, snow water equivalent; TDR, time domain reflectometry.

Kelleners et al., 2010

Very Physically Based – 3D

 Catchment is divided into 141 grid cells (10×10 m)

$$\phi = v_j \sum \left(Q_{streami}^* - Q_{streami} \right)^2 + v_j \sum \left(\theta_{i*}^* - \theta_i \right)^2$$

$$q_{dp} = \left\{ k_{sr} \frac{H+D}{D} \right\}$$

Kelleners et al., 2010

Very Physically Based – 3D

- Decent simulation of soil moisture, unsatisfactory simulation of streamflow
 - Wrong for the right reasons

Distributed Hydrology Soil Vegetation Model (DHSVM) Evaluate the impact of "improved" soil depth **SSURGO Soil Depth** information on streamflow and soil moisture simulations DHSVM Model Representation Topographically-based Hillslope Discretization Sail depth (cm 4pt: 187.7 Modeled Soil Depth Surface / Subsurface Flow Redistribution to / from Soil depth (cm) Neighboring Pixels righ: 374.388 2 (ND) Manu-Der: 18 7556

Soil Depth: Field Data

Soil depth measurement

- 2.2 m rod
- 1.27 cm diameter
- Pounded to refusal
- 2 or 3 repeats

Distributed soil depth points

819 points (calibration)

- 8 subwatersheds
- 130 random points (testing)
- During Spring when soil was moist

• J

Fence Post Pounder

Copper Coated Steel Rod 52

Predictor Variables

Symbol	Description	
sca	Specific catchment area from the $D\infty$ method. This is contributing area divided by the grid cell size	
modcurv	Curvature modeled based on field observed curvature.	
ang	The $D\infty$ flow direction: the direction of the steepest outwards slope reported as the angle in radians counter-clockwise from east	
avr	Average $D\infty$ vertical rise to ridge	
lspv	Longest vertical slope position	
lvs	Longest $D\infty$ vertical drop to stream	
slpg	Magnitude of topographic slope computed using finite differences on a 3x3 grid cell window	
sd8a	Slope averaged over a 100 m path traced downslope along D8 flow directions	
elv	Elevation above sea level	
plncurv	Plan curvature: the curvature of the surface perpendicular to the direction of the maximum slope	
pc1	First principal component from ERDAS IMAGINE	

Measured vs Modeled Soil Depth

Predicted Soil Depth Map

DHSVM

Recorded and Simulated stream flow (2002-2003)

Soil Capacitance Model (Reynolds Creek)

Snow Water Input (ISNOBAL)

Get the inputs right (accumulation, STORAGE, and ablation of snow)

Get the 1D soil water storage right

Ignore all lateral movement

No calibration to streamflow

See what happens

Soil Capacitance Model (Reynolds Creek)

- Throughflow occurs when soil column water holding capacity is exceeded
- Soil water storage parameterized by field capacity, plant extraction limit, soil depth

Good 1D Performance

Distributed Model

Distributed energy balance forcing

Distributed soil properties by similarity classes

No lateral flow simulated

Simulated storage excess agrees with streamflow

Connectivity Index

How do we Apply Process Understanding to Improve Prediction?

- **Revisit the lumped philosophy** of systems models
- Recognize catchments create physically lumped properties
- Replace mathematical lumping approaches with physically lumped properties
 - Use as validation targets
 - Build into new model structures
- The mechanisms by which catchments STORE water characterize the catchment system
- We should concern ourselves with how catchments **Retain Water** in addition to how they release water
 - Get storage right, and everything else will work out

How do we Apply Process Understanding to Improve Prediction?

 ...ecohydrology should synthesize Newtonian and Darwinian approaches to science...combining Newtonian principles of simplification, ideal systems, and predictive understanding (often, but not solely embraced by hydrologists) with Darwinian principles of complexity, contingency, and interdependence (often, but not solely embraced by ecologists)...offers the potential for profound and more rapid advances in our understanding of environmental process...

Brent Newmann

Striving towards a synthesis

Toward a Synthesis of the Newtonian and Darwinian Worldviews

Physicists seek simplicity in universal laws. Ecologists revel in complex interdependencies. Together, these two approaches may help solve the problems of global warming.

John Harte

Physicists and ecologists approach their crafts from different intellectual traditions, as exemplified by the differing values they attach to the search for simplification and universality. As a particle theorist by training, currently engaged in the study of ecology and global change, I have witnessed dysfunctional consequences of this bimodel logram. Lorgue here for a menthesis of what Leall the

PHYSICS	ECOLOGY	
The more you look,	The more you look,	
the simpler it gets	the more complex it gets	
Primacy of	Primacy of contingency and	
initial conditions	complex historical factors	

However...

 ...ecohydrology should synthesize Newtonian and Darwinian approaches to science...combining Newtonian principles of simplification, ideal systems, and predictive understanding (often, but not solely embraced by hydrologists) with Darwinian principles of complexity, contingency, and interdependence (often, but not solely embraced by ecologists)...offers the potential for profound and more rapid advances in our understanding of environmental process...

Brent Newmann

How do we compare catchments?

- M. Robinson (1992)
 - 20 papers from western and central Europe
 - Key Conclusion:
 Intercomparison is difficult

Institute of Hydrology

Report No. 120

Methods of hydrological basin comparison

Natural Environment Research Greacil

- Jones and Swanson (2001)
 - A basin's streamflow may be predicted by characterizing basin storage capacities in vegetation, soil, and snow...

HYDROLOGICAL PROCESSES Hydrol. Process. 15, 2363-2366 (2001) DOI: 10.1002/hyp.474

Hydrologic inferences from comparisons among small basin experiments

J. A. Jones¹ and F. J. Swanson²

 ¹ Department of Geosciences, Oregon State University, Cowallis, OR 97331-5506, USA
 ² USDA Forest Service, Pacific Northern Research Station, Cowallis, OR 97331, USA The hydrologic community is poised to make important advances in basic hydrology through comparative analysis of small basin experiments around the world. Existing long-term records from small basins have already enriched our knowledge of fundamental processes and important societal issues, and yet they contain a wealth of untapped information about hydrologic and biogeochemical responses to climate change, natural disturbance and human activities over a wide range of climate, geophysical and vegetation sattings

- McDonnell and Woods (2004)
 - Governing principles are known
 - Heterogeneity rules the day
 - Possible classification metrics include
 - Response time of dominant storage

E.C.
ELSEVIER

Available online at www.sciencedirect.com SCIENCE DIRECT.

Journal of Hydrology 299 (2004) 2-3

Journal of **Hydrology**

www.elsevier.com/locate/jhydrol

Editorial On the need for catchment classification

- Wagener et al. (2007)
- **Classification** is a rigorous scientific inquiry into the causes of similarities and relationships between catchments.

Geography Compass 1/4 (2007): 901-931, 10.1111/j.1749-8198.2007.00039.x

Catchment Classification and Hydrologic Similarity

Thorsten Wagener,¹* Murugesu Sivapalan,² Peter Troch,³ and Ross Woods⁴

¹Department of Civil and Environmental Engineering, Pennsylvania State University ²Departments of Geography, and Civil and Environmental Engineering, University of Illinois, Urbana-Champaign

³Department of Hydrology and Water Resources, University of Arizona ⁴National Institute of Water and Atmospheric Research, New Zealand

• Wagener et al. (2007)

• Wagener et al. (2007)

 Landscape structure moderates transit times

HYDROLOGICAL PROCESSES Hydrol. Process. 23, 945–953 (2009) Published online 28 January 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/hyp.7240

How does landscape structure influence catchment transit time across different geomorphic provinces?

D. Tetzlaff,¹* J. Seibert,² K. J. McGuire,³ H. Laudon,⁴ D. A. Burns,^{5†} S. M. Dunn⁶ and C. Soulsby¹

Abstract

Despite an increasing number of empirical investigations of catchment transit times (TTs), virtually all are based on individual catchments and there are few attempts to synthesize understanding across different geographical regions. Uniquely, this paper examines data from 55 catchments in five geomorphic provinces in northern

How to Apply Process Information to Improve Prediction

- **Recognize** that the existence of true physically-based models is a **myth**
- **Identify** physically lumped properties
- Build conceptual models based on the ways catchments lump properties, not mathematical
 - Systems approaches using "essential" parameters

How to Apply Process Information to Improve Prediction?

- Recognize that the existence of true physically-based models is a myth
- Identify hydrologically relevant processes or properties for hydrogeographic regions
 - Classification
- Build models that target relevant hydrologic processes or properties
 - Systems approaches using "essential" parameters

