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How to Predict in Data Poor Basins?

e Lack of streamflow data means that model calibration
opportunities are restricted.

e Typically there is also a lack of detailed meteorological data.
e Reanalysis data
e NWP model outputs
e Extrapolation

Satellite information can provide good surface vegetation
cover information.

DEMSs are becoming excellent.

Many regions have adequate soil information.
Groundwater information is often lacking.

Climate and sometimes land use changes are occurring.

Can we find the appropriate data and parameters for PUB in
data poor regions?



Stop the Bullet or Dodge the
Bullet?




Stop Hydromythology Now!

e Defn: Older concepts that have been dismissed by scientific
Investigation but persist in hydrological models.

e Examples:

e Radiation is impossible to estimate with normal meteorological data
Evapotranspiration can be estimated by temperature and wind functions
Temperature index melt of snow and soil thaw

e Snowfall determines snow available for melt
Sublimation = 0
Snowfall gauge correction = snow redistribution loss

e Soils can be represented as uniform porous media and subjected to

clever mathematical manipulations
Macropores =0

Green-Ampt or Richard’s Eq. can work “as is” or are still physically based when
heavily calibrated from streamflow

e All land surfaces drain freely to streams with quick flow at overland flow
velocities
Hortonian overland flow
Contributing area = 100%
e Frozen soils behave like unfrozen soils
Calibration of unfrozen soil infiltration for frozen conditions



Science or Mythology?

e Conceptual
models o
sometimes
accept
mythology and
“calibrate” to
live with It.

e Models must
reject
mythology and
Incorporate
scientific
advances




Process-based Catchment Modelling

e Multi-scale modelling, selected field studies and remote
sensing can be used for finding appropriate model
structure and parameters.

e Appropriate parameterisations help diminish
“hydromythodologies”.

e Modelling using our understanding of hydrological
processes is both scientifically satisfying and a robust
approach to dealing with non-stationary systems.

e Failures of uncalibrated modelling at research basins are
Instructive. Embrace our failures.

e What are the limits to prediction of the physically based
approach?

e How can conceptual and physically based approaches be used
In process based catchment modelling?



Research Basins
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Cold Regions Hydrological Model Platform:
CRHM

Modular, object oriented — purpose built from C++ modules

Modules based upon +45 years of hydrology research at Univ of
Saskatchewan and Environment Canada

Range of complexity and physical basis available in modules
Structure set by user depending on objective function
Parameters set by knowledge rather than optimization
Hydrological Response Unit (HRU) basis

e landscape unit with characteristic hydrological processes/response

e single parameter set

e horizontal interaction along flow cascade matrix

e Model tracks state variables and flows for HRU

e Coupled energy and mass balance, process algorithms applied to
HRUs via module selection

e HRU connected aerodynamically for blowing snow and via dynamic
drainage networks for streamflow

e Flexible - can be configured for prairie, mountain, boreal, arctic basins
e Sub-basins connected via Muskingum routing

Pomeroy et al., 2007 Hydrol. Proc. Tom Brown, CRHM Modeller



Rationale for CRHM Platform

Frustration with adding locally important process
algorithms to existing hydrological models

Frustration with trying to fit inappropriate structure of
existing models to basins

Frustration with inability to fit conceptual spatial
representations to reality.

Frustration with models that only focus on
streamflow response to precipitation

Frustration with attempts to teach modelling to
hydrologists using antiquated computer languages,
difficult user interface, limited documentation of
models

Frustration with the lack of a graphical system to
evaluate model inputs and outputs




Hydrological Response Units

e A HRU is a spatial unit in the basin that has
3 groups of attributes

e biophysical structure - soils, vegetation,
drainage, slope, elevation, area
(determine from GIS, maps)

e hydrological state — snow water
equivalent, snow internal energy,
intercepted snow load, soil moisture,
depressional storage, lake storage,
water table (track using model)

e hydrological flux - snow transport,
sublimation, evaporation, melt
discharge, infiltration, drainage, runoff.
Fluxes are determined using fluxes
from adjacent HRU and so depend on
location in a flow sequence.

e HRU need not be spatially
continuous but must have some
approximate geographical location
(e.g. in a catena) or location in a
hydrological flow sequence




Hydrological Response Units

Sequential HRU — HRU — draining directly to stream
landscape connectivity




Estimating Radiation for Energy
Balance

Theoretical superiority of energy balance
calculations are well known for calculating
sublimation, snowmelt and
evapotranspiration.

Energy balance estimations are robust and
appropriate for extreme events, climate and
land use change studies.

Use of energy-balance is restricted by
difficulty in obtaining measured solar
radiation data.



CRHM data requirements

CRHM normally requires hourly or dalily

values of:

Air temperature, humidity, precipitation,
Wind speed, Solar radiation

CRHM can estimate incoming longwave and
net radiation from shortwave

Solar radiation can be
measured,

estimated
estimatec

estimatec

from NWP reanalysis data,
from observed sunshine hours or
from empirical techniques that rely on

alr temperature



Edmonton 1979-2000
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Empirical atmospheric
transmittance equations

Q. can be calculated directly if the
atmospheric transmittence is known

Many similar relationships, all give similar
results:

Bristow and Campbell and Walter et al.
Annandale

All use a simple relationship between daily
atmospheric transmittance and the range
of dally air temperatures



Edmonton 1979-2000

y =0.888663x + 18.2169
R*=0.8194

*

E
»
g
=
©
o
c
@
Q
S
o
O
L
©
S
S
a
=
D
s
£
@
O
2
0
@
i

AR
100 300
Measured mean daily Qsi (W/m?)




CRHM Snowmelt Simulation

—&—— Measured Qsi
. NARR
——&—— NCEP
° CBW




Canadian Prairie Runoff Generation
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What does the Hydrograph Tell Us?

Smith Creek, Saskatchewan

Drainage area ~ 450 km?

25 A
©
c
§ 20 - snowmelt peak A
(V)]
S 45 | — Average 1975-2006
mE — 1995 High Year
g 10 A —— 2000 Low Year
£
g 51
5 No baseflow from groundwater

0 -1  r  _°rr *r  * '+ 71T " 71"

INC-0€

uer-T1o
uer-Te -
Te|N-20 -
1dw-10
KeN-TO
ReN-TE
unc-0g
bnv-62
das-8¢
100-8¢2
AON-/2 -
28Q-/2 -



Variable Connectivity and Storage
In Prairie Drainage Networks




Non-Contributing Areas to
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Smith Creek Research Basin

e Established 2007 to study effects of wetland drainage on
contributing area dynamics and streamflow generation




Instrumentation of Smith Creek

Completed
Summer 2007
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Snow, Soil and Wetland Surveys




Smith Creek Basin Characteristics
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LIDAR - Light Detection and Ranging
— for high resolution topography




LIDAR-Derived Drainage Network

Aggregation of channel and sub-basin segments
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Derivation of Wetland Depressions

SmithCreek_Cut and Fill
VOLUME
- Net Can

Urchanges
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Figure 3. (a) Oniginal 10-m LiDAR DEM. (b) filled depressionless 10-m LiDAR DEM. and (c) “cut/fill " output for Smith Creek basmn.




CRHM Prairie Module Structure
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Calibrated Approach
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RU and Basin Delineation
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HRU Routing and Sub-basin (RB)
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Smith Creek SWE and 0 Prediction

Snow Accumulation
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Runoff Prediction: with calibration (no Lidar) and

uncalibrated (Lidar DEM for depressional storage)
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Marmot C

reek Research Basin
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Alpine and Forest Terrain
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Winter Snow Redistribution Modelling

snow blows from north face to south face
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Forest Snow Modelling

Sub-canopy Snowmelt Snow Interception and Sublimation




Forest Snow Regime on Slopes
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CRHM Mountain Structure
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Elevation

“Intersect”
HRUs

Forest
Covers

HRU Delineation

e Driving meteorology:
temperature, humidty,
wind speed, snowfall,
rainfall, radiation

e Blowing snow,
Intercepted snow

e Snowmelt and
evapotranspiration

e Infiltration &
groundwater

e Stream network
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Model Tests - SWE
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Streamflow Prediction 2006
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Hydromythology can be Fought

The perils of calibration with changing hydrology

myth




Conclusions

A variety of process algorithms are available and can be
aPplled In basin scale modelling with data available from _
standard meteorological stations or from atmospheric models in
data poor regions.

Remote sensing, basic soils information and local research
catchments provide the means for discriminating appropriate
HRU and defining model structure — these approaches can be
extended to data poor regions.

Remote sensing and process experiments from research basins
can be used to parameterise models, reducing the need for
calibration from streamflow. Success depends on appropriate
model process structure and spatial representation.

Model structures and parameterisations can be regionalised
Brom research basins for use in ungauged basins with minimal
ata.

Streamflow information can still be used to improve model
performance in streamflow prediction

e Diagnostic evaluation of model failure and recommendations for
improvement



