Suspended sediment yields of rivers in Turkey

FAZLI OZTURK

Department of Farm Structures and Irrigation, University of Ankara, Faculty of Agriculture, 06110 Diskapi, Ankara, Turkey

Abstract The aim of this paper is to quantify the spatial distribution of suspended sediment yields of rivers in Turkey, and to quantify the suspended sediment flux to the sea, to lakes and reservoirs, and out of the country. Sediment yields in Turkey vary in accordance with the erosion potential of the river basins and values range from 12 to 609 t km⁻² year⁻¹. The total mass of suspended sediment flowing to the sea, lakes, reservoirs, and out of the country is 175 000 000 t year⁻¹. The sediment yields of selected basins are compared with average values for the world.

INTRODUCTION

Man has faced problems caused by erosion, transportation and deposition of sediment ever since the civilisations that developed in the fertile valleys of the Nile, Tigris, Euphrates, Indus and the Yellow River. As early as 4000 BC people dug canals, built storage dams, diverted water and constructed flood protection works. With the development of rivers for multi-purpose use, such as irrigation, power generation, flood control, navigation, water supply for industry and drinking, and recreation, man has interfered with the equilibrium of alluvial streams and created several problems.

Erosion of soil from river basins involves the processes of detachment of soil from the soil surface and its transport by runoff and wind. Some sediment is also eroded from the bed and banks of small and large channels. Part of the sediment eroded by the action of rainfall and surface flow is deposited in the lower parts of the basin, in streams and on flood plains, and the remainder is transported to the sea unless it is deposited in reservoirs. The study of erosion and sediment yield from river basins is important for many reasons. Deposition of sediment in a reservoir reduces its capacity, thereby adversely affecting water supply for irrigation, domestic and industrial use and for power generation. Depletion of reservoir capacity is a serious problem, since after some years reservoirs may become ineffective in holding large quantities of water. When sediment eroded from river basins is deposited on stream beds and banks it can cause braiding of river reaches, inundation of the flood plain during floods and reduction of clearance below bridges. The removal of fertile topsoil from a river basin will also adversely affect the agricultural production.

MATERIAL AND METHODS

Systematic data collection on the sediment transport characteristics of surface waters in Turkey, compatible with International Standards was initiated by the General Directorate

Fazli Ozturk

of Electric Power Research Survey and Development Administration (EIE) in 1962 within the framework of the hydrometric observations at the basic station network in Turkey.

Suspended sediment sampling is undertaken by the depth-integrated method using USDH-48 and USD-49 sampling equipment. The sediment concentrations of the samples are determined in the EIE laboratory, mostly by filtration, and analysis of the grain size composition of these samples is performed to determine the sand, silt and clay content.

Suspended sediment concentrations are expressed as parts per million by dry weight of the sample. Suspended sediment samples are usually collected at monthly intervals and are used to develop sediment rating curves for each streamgauging station site, where values of sediment discharge (t day⁻¹) are plotted against the river discharge at the time of sampling. For each of the 95 streamgauging stations operating in 1990, the annual suspended sediment load is computed using available daily discharge data and the sediment rating curve. The main river basins of Turkey are shown on the map presented in Fig. 1.

Calculation of sub-basin sediment yields

Average annual values of suspended sediment yield from successive downstream subbasins have been calculated using the method presented in Fig. 2. If the suspended load decreases downstream the sediment yield for the intervening sub-basin has not been calculated (Lajczak & Jansson, 1993).

RESULTS

Mean annual suspended sediment yields for the basins are presented in Table 1. From Table 1 it can be seen that the highest sediment yield is $609 \text{ t km}^{-2} \text{ year}^{-1}$.

Suspended sediment inflow to the sea, to lakes and reservoirs, and out of the country

The gauging stations near river mouths have been used to calculate the mean annual suspended sediment inflow to the sea, to lakes and reservoirs, and out of the country. Transport to the sea by rivers without sediment gauging stations has been tentatively estimated using analogous neighbouring gauged rivers, taking account of their drainage areas.

Table 2 presents the mean annual suspended sediment flux to the sea from the river basins of Turkey. The Kizilirmak River is the main source of suspended sediment flux to the sea. The contribution by this river reaches 19 533 275 t year⁻¹, i.e. 25.5% of the total input to the sea. The Sakarya River discharges 11 953 516 t year⁻¹, i.e. about 15.6% of the total input to the sea.

Table 3 presents the mean annual suspended sediment input to lakes and reservoirs, and the transport out of the country. The Euphrates River transports $54\ 987\ 544\ t\ year^{-1}$, i.e. 56.4% of the total input to lakes, reservoirs, and transport out of the country. The

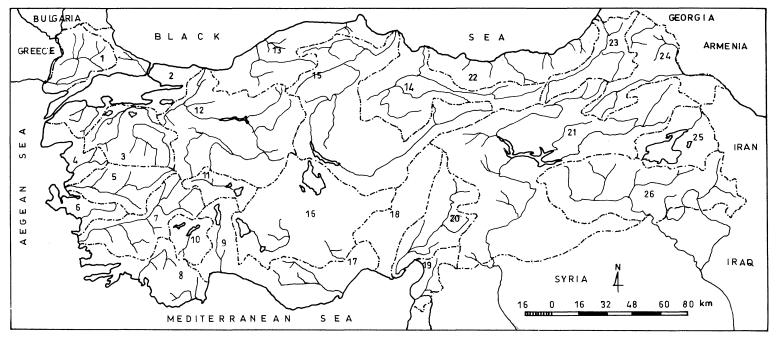
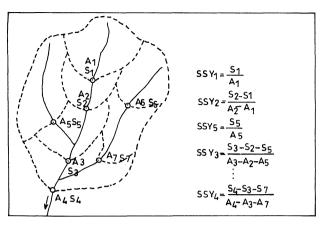



Fig. 1 Map of the river basins of Turkey.

Fig. 2 The method of calculating suspended sediment yield from successive downstream sub-basins. A = drainage area (km²); S = suspended sediment load (t year⁻¹); and SSY = suspended sediment yield (t km⁻² year⁻¹).

Table 1 Suspended sediment yields of river basins in 7	Turkey.
--	---------

Basin number and name	Period	Average annual precipitation (mm)	Average suspended sediment yield (t km ⁻² year ⁻¹)
26 Dicle (Tigris)	1966-1990	814	609.0
21 Firat (Euphrates)	1963-1990	582	466.2
23 Coruh	1967-1990	540	396.0
14 Yesilirmak	1967-1990	556	279.7
20 Ceyhan	1966-1991	758	247.0
15 Kizilirmak	1967-1990	459	235.9
8 Western Mediterranean	1969-1990	865	235.2
13 Western Black Sea	1963-1990	803	219.9
17 Eastern Mediterranean	1966-1990	669	187.5
12 Sakarya	1963-1991	534	182.3
24 Aras	1969-1990	462	173.1
18 Seyhan	1966-1990	629	149.1
3 Susurluk	1964-1990	730	141.9
9 Antalya	1969-1990	910	128.3
22 Eastern Black Sea	1969-1990	1291	98.8
6 K. Menderes	1973-1990	740	94.0
5 Gediz	1967-1990	639	84.6
7 B. Menderes	1967-1990	656	63.0
4 North Aegean	1979-1990	730	35.0
1 Meric-Ergene	1971-1990	640	34.0
25 Van Lake	1979-1988	507	32.0
2 Marmara	1973-1990	766	25.0
16 Konya closed basin	1983-1990	437	23.0
19 Asi	1975-1990	837	15.0
10 Burdur lakes area	1979-1990	436	12.0

Basin number and name	Data source:		Suspended sediment flux:	
	Measured (km ²)	Estimated (km ²)	(t year ⁻¹)	(%)
1 Meric-Ergene	10 298	3 681	461 222	0.6
2 Marmara	1 194	17 218	460 300	0.6
3 Susurluk	4 370	4 003	1 070 576	1.4
4 North Aegean	1 576	8 427	350 105	0.5
5 Gediz	9 615	8 117	1 263 598	1.6
6 K. Menderes	3 277	3 628	649 070	0.8
7 B. Menderes	20 250	1 116	784 583	1.0
8 Western Mediterranean	6 939	11 440	4 322 653	5.6
9 Antalya	5 031	7 012	1 541 689	2.0
12 Sakarya	12 219	44 189	11 953 516	15.6
13 Western Black Sea	14 632	12 927	6 059 619	7.9
14 Yesilirmak	33 504	2 388	6 229 588	8.1
15 Kizilirmak	50 039	27 440	19 533 275	25.5
17 Eastern Mediterranean	12 310	9 738	4 133 415	5.4
18 Seyhan	14 015	6 365	3 079 302	4.0
20 Ceyhan	19 095	2 340	5 294 445	6.9
22 Eastern Black Sea	5 692	18 383	2 341 234	3.1
23 Coruh	16 353	1 718	7 164 036	9.4
Total	240 409 ^a	190 130 ^a	76 692 226	100.0

Table 2 Mean annual suspended sediment flux to the sea from river basins in Turkey.

^a Parts of river basins outside the boundaries of Turkey are not included.

Table 3 Mean annual suspended sediment inflow to lakes and reservoirs, and transport out of the country.

Basin number and name	Data source:		Suspended sediment inflow:	
	Measured (km ²)	Estimated (km ²)	(t year ⁻¹)	(%)
10 Burdur, lakes area	1 276	5 098	624 452	0.6
11 Akarcay	-	7 605	1 809 990	1.9
16 Konya closed basin	281	53 850	1 245 013	1.3
21 Firat (Euphrates)	81 869	44 490	54 987 544	56.4
24 Aras	13 320	13 472	4 637 343	4.8
25 Van lake	1 544	19 405	670 368	0.7
26 Dicle (Tigris)	45 360	11 874	33 465 271	34.3
Total	143 650 ^a	155 794 ^a	97 439 981	100.0

^a Parts of the river basins outside the boundaries of Turkey are not included.

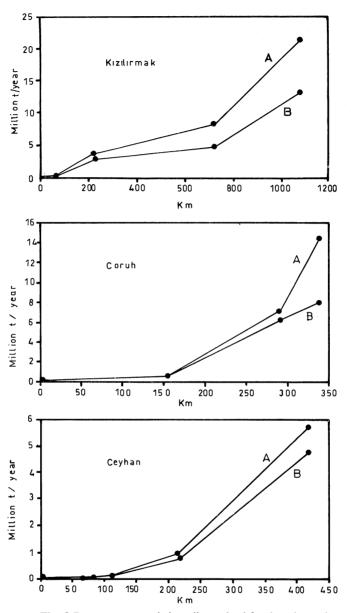


Fig. 3 Downstream trends in sediment load for three large rivers draining to the sea, Curve A represents the hypothetical cumulative sediment inflow to the main river, curve B represents the actual sediment load in the main river calculated from measurements.

Tigris River transports 33 465 271 t year⁻¹, i.e. 34.3% of the total input to lakes, reservoirs, and transport out of Turkey.

When compared with the data included in other publications, e.g. Holeman (1968), the values given presented above for Turkey must be seen as high, except in comparison to the Asian Continent. It is estimated that the Earth's surface is being eroded at an

average rate of 3 cm per thousand years and hence it may take about 28 million years for the Earth's surface to be reduced to sea level (Garde, 1991).

Suspended sediment deposition along large rivers

Rates of suspended sediment deposition within the individual basins can be calculated for large rivers which have more than two tributaries as indicated in Fig. 3. The sediment load measured in the main river is represented as curve B, whereas curve A represents the suspended matter transport in a hypothetical situation without sedimentation (based on tributary loads). The difference between the two curves shows the deposition rate, which also includes material deposited in reservoirs. Sediment is deposited in river channels, on the flood plain and in reservoirs. There are, for example, about 34 large and small reservoirs on the Kizilirmak River and its tributaries, and eight and seven large and small reservoirs on the Ceyhan and Coruh Rivers and their tributaries respectively. In consequence, fluvial sediment transport is reduced by deposition in a large number of reservoirs.

Calculation methods are of great importance in influencing the magnitude and accuracy of calculated loads. For instance, in Turkey, where suspended sediment samples are usually collected at monthly intervals, concentration values representative of the maximum values occurring during flood events are generally missing from the record (Ozturk & Kodal, 1988). This affects the representativeness of the data and the magnitude of the estimated loads, especially in small mountainous rivers with very rapid variations in water discharge and turbidity.

REFERENCES

Garde, R. J. (1991) Erosion and sediment yield from catchments. Lecture Notes of Regional Training Course on Reservoir Sedimentation and Control, CWC, New Delhi, India, 2.1-2.16.

Holeman, J. N. (1968) The sediment yield of major rivers of the world. Wat. Resour. Res. 4, 737-747.

Lajczak, A. & Jansson, M. B. (1993) Suspended sediment yield in the Baltic drainage basin. Nordic Hydrol. 24, 31-52.

Ozturk, F. & Kodal, S. (1988) Determination of the relationship between water discharge and suspended sediment yield in Ova Creek (in Turkish). University of Ankara, Faculty of Agriculture Yearbook 39, 1-9.