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Abstract The most powerful developments in rainfall-runoff modelling refer 
to a physically-based approach to allow for spatial variations as well as 
impacts, nowadays caused by man-induced land-use changes. With increased 
computer power, two-dimensional overland flow modelling became the state 
of the art. But due to highly varying flow characteristics over complex 
surfaces, the use of point equations for the detailed description of spatially 
occurring processes rapidly leads to a data deficit in the requirements. In 
addition, the assumptions of gradually varied flow in the point-scale 
technology used do not hold, unless one smoothes the important 
microtopographic surface structure. To overcome these deficiencies 
spatially-averaged conservation equations for interacting rill and interrill 
area overland flows are introduced. On the basis of the kinematic wave 
approximation the combined rill (channel) and interrill (sheet) flow is treated 
as one-dimensional flow with an additional interaction term. The overland 
flow part with the quasi-two dimensional conservation equations of the 
presented catchment modelling system is then linked to the flow in the 
channel network. It is routed by the fully dynamic St Venant equations.

INTRODUCTION

The hydrological component represents a major part within the integrated watershed 
management approach, considering, assessing and combining the complex 
relationships between environmental features as well as the cumulative effects of 
disturbances on environmental quality across complex landscapes. Therefore, the 
requirements for hydrological models simulating overland flow and related transport 
processes on a physical basis, by using mathematical algorithms, increased 
significantly in the same way as the demand for higher modelling precision has risen. 
Although, new tools such as geographic information systems have been developed to 
enable the assessment of spatial heterogeneity, present physical modelling of surface 
transport processes still requires assumptions of spatial homogeneity. The justified 
degree of simplification is determined by model scale, data requirements, availability 
and processing of data as well as by expenses for man-power and instrumentation 
involved in the overall watershed management task.

Due to the difficulties of quantitative estimates on surface transport processes by 
physically-based modelling approaches, simulations were done on the basis of 
conceptual models. As they combine the simplicity of an empirical concept with the 
wider applicability of the more rigorous physically-based approach, their advantage 
lies in the representation of the significant features of a physical process in 
mathematical terms. Although several decades have elapsed since these methods were 
introduced, they still play a major role in computer-based complex hydrological 
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models where, in addition, the movement of nutrients, chemicals and pesticides is 
estimated and predicted. Their predictive capabilities are limited however to the 
simulation of various simple scenarios, as well as the evaluation of the resulting 
consequences as only a limited understanding of the underlying physical process is 
reflected by the conceptual approach.

Over the last few decades hydrologists have constantly decreased the lack of 
physical basis of mathematical models. But simulating overland flow by a fully 
dynamic, two-dimensional model accounting for microtopographic flow 
characteristics (Zhang & Cundy, 1989) will hardly be feasible if a catchment exceeds 
a certain size. A first practical technique for solving the conservation equations was 
based on the approximate kinematic wave theory (Lighthill & Whitham, 1955; 
Iwagaki, 1955). It was then first introduced to the modelling of watershed flow 
problems by Henderson & Wooding (1964) who considered in theory the runoff from 
a V-shaped catchment (Wooding, 1965a,b, 1966) (Fig. 1(a)). A detailed analysis on 
the kinematic wave criteria was then published by Woolhiser & Liggett (1967). The 
practical validity of the kinematic model has to be judged by direct reference to the 
physics of the processes involved e.g. by considering more accurate differential 
equations of higher order (Morris & Woolhiser, 1980; Viera, 1983).

The concept of kinematic cascades (Fig. 1(b)) was introduced by Brakensiek 
(1967). Based on the kinematic wave theory it helped to overcome geometric

(a) V-shaped catchment 
approximation by kinematic cascades - concept

(b) Hillslope shape approximated

hillslope scale

large scale averaging 
of flow dynamics 
between neighbouring 
contour lines

(c) Rectangular grid where information 
and computation at each node is 
required  , .  _local averaging of flow 

dynamics

(d) Large scale averaging of flow 
dynamics between 2 neighbouring 
contour lines

stream channel flow
Çig- 1 Schematic representations of shape approximations of watersheds in overland 
flow modelling: (a) V-shaped catchment, (b) kinematic cascades—KINEROS, 
(c) rectangular grids—SHE model, etc., (d) spatially averaging technique of flow 
dynamics. 
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landscape restrictions in modelling complete watersheds. This type of model 
represents the first of its kind to combine a physically-based approach with an opera
tional method as well as offering a certain flexibility to varying hillslope shapes.

Due to increased computer power over the years a big effort was also put into 
mathematical models coping with the spatially highly variable overland flow 
phenomena, as well as surface transport processes by using a fully dynamic two- 
dimensional approach (Abbott et al., 1986a,b; Bathurst, 1986; Lane & Nearing, 
1989; Nearing et al., 1989). Aiming at considering microtopographic characteristics, 
a grid-based approach as well as the use of the point-scale technology poses the 
problem of estimating local friction and local x- and y-direction slope values at 
multiple single/nodal points of a computational network over a watershed due to the 
two-dimensional solution of the point-scale overland flow equations (Fig. 1(c)). In 
practice, this results in a very substantial parameter estimation problem. To 
overcome grid-based routing disadvantages as well as the difficulties of flow division 
and convergence in one-dimensional kinematic routing on a grid basis, an improved 
two-dimensional kinematic routing concept on a triangular irregular network was 
developed by Goodrich et al. (1991).

These and other physically-based models are essential in highlighting the 
physical processes involved. But in general, they are confronted with difficulties in 
estimating overland flow parameters due to the heterogeneity of the land surface 
microtopography. In addition they also have difficulties in computing overland flows 
at small grid spacing in order to gain realistic results. All recent models are based on 
a dynamic approach in one or another way, considering point-scale overland flow 
equations. But their correct solutions require gradually varied flow. Therefore in the 
case of a rapidly changing microtopography on a hillslope, it is not possible to use 
the point-scale equations, unless one smoothes the natural surface microtopography 
(Tayfur et al., 1993). To account for a realistic overland flow situation, the 
importance of the natural hillslope system, broken into rill and interrill processes 
(Emmett, 1978; Meyer et al., 1975), has to be understood and then considered.

A MATHEMATICAL OVERLAND FLOW MODEL

A physically-based modelling technique represents a major advance in understanding 
and predicting overland flow on complex hillslope profiles. Based on the derivation 
of spatially averaged conservation equations for interacting rill and interrill area 
overland flows (Tayfiir & Kavvas, 1994), this section will show ways to overcome 
the common difficulties in:
- estimating overland flow parameters of heterogeneous surfaces;
- computing overland flows at small grid spacing for realistic results by
- considering the microtopography of the surface at the same time,
- representing the flow over complex landscape surfaces.
In real life situations, overland flow, over land surfaces, is characterized by flow on 
interrill areas as well as flow in rills discharging into the stream channel network of a 
catchment (Fig. 1(d)). Hence, a good hydrological model not only has to assume the 
occurrence of surface flow as sheet flow, it also has to consider the influence of rills 
on the flow dynamics to avoid serious misinterpretation of results and finally has to 
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have the capability to express the combined flow dynamics over the landscape 
forming hillslopes.

Kavvas & Govindaraju (1992) combined in a simple and strictly one-dimensional 
way—no interaction between flows in parallel rills and neighbouring interrill areas— 
the rill flow dynamics. As interrill areas always contribute a certain amount of flow 
towards rills, which in a realistic approach therefore can’t be assumed as straight and 
parallel, a two-dimensional expansion of the combined flow dynamics was then 
developed by Tayfur & Kavvas (1994), where flow interaction between interrill areas 
and rills exists.

The interrill area flow is conceptualized as a two-dimensional sheet flow and a 
one-dimensional channel flow is assigned to the rills. The overland flow dynamic is 
simulated by a kinematic wave approximation of the St Venant equations as this is a 
very practicable approach (Govindaraju et al., 1992; Woolhiser, 1975). The 
kinematic wave arises out of a continuity equation,

dA dQ n
+ — R

dt dx (1)

e.g. with A as the cross-sectional area of flow, Q as the discharge and R as a 
source/sink term as well as a unique relationship of the form:

Q = Q(A;x,t) (2)

For the case of two-dimensional overland flow over a plane of constant width this 
results in:

dho . z x S(ly
—— = i(x,y,t) - —— + —— 
dt dx dy

and

(3)

qx =qx(h<>',x,t) 

qy =qy(ho;y,t)

(4a)

(4b)

where qx and qy denote the discharge per unit width in the x-direction and in the y- 
direction respectively, ho(x,y,z) the interrill area sheet flow depth and ie the rate of 
rainfall excess. In most situations of hydrological relevance an explicit independence 
of q on t can be assumed leading to qx — qx(h0;x) and qy = qy(h0\y) respectively. It 
can be expressed in power law form q = chm with c and m as parameters giving qx 
and qy as

<lx = Cxhf =

hf

and

Qy=Cyh5J3 =

/z5/3 o (5a)

(5b)
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Fig. 2 Schematic flow element representing the sheet flow dynamics on an interrill 
area.

where n denotes Manning’s roughness coefficient, Sox the bed slope in the x-direction 
(Sox = tan0Y) and Soy the bed slope in the ^-direction (Soy =tan0},) (Fig. 2).

As equation (3) represents an equation conserving mass at a single point, its 
practical application will be impracticable as each model parameter has to be 
monitored at every single node/point location on the hillslopes. Therefore equation 
(1) is locally averaged over an individual interrill area having a width I (Fig. 1(d) and 
Fig. 3) to obtain the locally averaged sheet flow equation:

. í - <6>
Ul (JJC Z* L

where h0 and ie denote the averaged parameter values. Although equation (6) is one
dimensional, it contains two-dimensional properties as the second term on the right

sections on interrill
areas on both sides
of the rill

Fig. 3 Schematic landscape representation of a part of a watershed with a local-scale 
averaging rill and interrill section as well as with a large-scale averaging area 
between two neighbouring contour lines.
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hand side of the equation represents the water flux discharging from the interrill area 
section into the rill.

The locally averaged one-dimensional equation for rill flow is similar to the 
overland flow equation. For a rectangular rill cross-section as well as under the 
kinematic wave assumption, the flow equation can be stated as:

+ _ 75T i d (bhr^ 
dt le n br dx yjb + 2hr = fr(hr,b-,x,f) (7)

where b denotes the rill width, /zrthe rill flow depth, Sox the bed slope of the rill and 
qt the net lateral inflow from the interrill area section into the rill—can then be 
separated into a rill inflow component from the right-hand side of the rill as well as 
the left-hand side and can be estimated according to equations (5a) and (5b).

But as natural landscapes consist of hillslopes with microtopographic surface 
structures characterized by a large number of rills and interrill areas, it is unrealistic 
to evaluate the physical and hydraulic properties of each rill and interrill section in 
order to avoid gross errors in the flow predictions. Therefore the locally averaged 
flow equations (6) and (7) have to be averaged along the transect and/or contour lines 
of the watershed representing hillslopes (Fig. 1(d) and 3). This large-scale averaging 
is based on the stochastic averaging theory. Its application to the overall overland 
flow dynamics (combined averaged interrill and rill flow) over a certain length L 
results in an equation for an overall mean flow depth h (Govindaraju et al., 1992):

= {fr(hr^b;x,t)).X(x,y,t) + (f0(h„;x,y,t)).[l - k(x,y,t)] (8)

Equation (8) reflects the distribution of the rills over a hillslope through the 
parameter X (x,y,t) as well as the fact that any stochastic parameter such as the rill 
widths and depths etc. have to be averaged which is expressed by (). The multiple 
solution of equation (8) for various hillslope transects respectively watershed contour 
lines leads then to averaged flow velocities and discharges. Overland flow towards 
the draining watershed channels can then be computed.

THE OVERLAND FLOW MODEL WITHIN A WATERSHED FRAMEWORK

The spatially-averaged conservation equations for overland flow with interacting rill 
and interrill dynamics represent the innovative component of the new watershed 
modelling system for the transport over complex surfaces. Other presently available 
process components incorporated into the expending system are rainfall, infiltration 
and channel flow. The system, expendable for soil erosion, nutrient transport etc., 
allows for spatial and temporal variability of the relevant parameters. The watershed 
is subdivided by contour lines where the controlling parameters are averaged over 
the area between neighbouring contours. The input file is structured in such a manner 
that the relevant simulation parameters for the estimation of the flow dynamics along 
chosen streamlines are provided for each area between neighbouring contour lines. 
Consequently the resulting overland flow discharges from the hillslopes, which 
finally drain into the channel network of the watershed, are computed. However, due 
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to the splitting of the basin by contour lines as well as stream lines, spatial variability 
is considered. For every time increment during the simulation of a rainstorm a 
relevant input file has to be prepared. Thus, the system not only allows for areal 
variability but also considers the temporal variations within a storm event.

Monitored rainfall data are gathered from various raingauges representing the 
rainfall characteristics of the catchment. It is planned to provide a pattern of rainfall 
intensities as simulation input for a situation of a moving thunderstorm over a 
research area.

The infiltration is simulated on the basis of the Green & Ampt (1911) 
parameters. Due to its simplicity as well as widely available parameters this model is 
very popular in large-scale watershed modelling. Using an approximation procedure, 
certain assumptions regarding the hydraulic properties of the soil have to be 
considered:
- homogeneous soif profile,
- infiltration only occurs in the vertical direction,

infiltration through macropores is neglected,
shrinking and expansion of the soil is negligible,

- no encrustation on the soil surface occurs during rainfall.
As the Green & Ampt model was used for the ponded infiltration into a 

homogeneous soil with initial uniform water content (Fig. 4), the infiltration rate is 
given by:

f = K + K—^~ (9)

and its integration leads to:

F
Kt = F-nwf ln(l +------) (10)

J n\\f f

with n = (|)c - 0Z denoting the available porosity, (|)c = (|) — (|)r the effective porosity, 
the residual saturation, 0Z the initial soil water content, the wetting front capillary

Fig. 4 Schematic representation of a soil water infiltration front for a precipitation 
event with a rainfall intensity (a) constant in time as well as (b) varying in time.
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pressure head [cm], t the time [h], F the total amount of infiltrated water [cm], / the 
infiltration rate [cm h1] and K the hydraulic conductivity [cm h1]. These parameters 
can be estimated on the basis of soil texture classes (Rawls et al., 1983).

The runoff produced on the hillslopes forms small stream channels where it is 
finally transported through the stream channel network towards the outlet of the 
watershed. Considering a complex fourth-order dendritic channel structure on the 
basin scale (Fig. 5), Rajbhandari (1989) applied an efficient method for the solution 
of the two partial differential equations representing the conservation of mass and 
momentum to simulate the network’s flow dynamics. For the computational 
improvement the overlapping Y-segment (Sevuk, 1973) and/or sequential routing 
technique (Yen & Akan, 1976) is used as well as a sparse matrix solution technique 
based on a special Gauss elimination technique (Gupta & Tanji, 1977) to gain a fast 
solvable matrix of banded structure of the dynamic equations. An implicit weighted 
four-point finite-difference scheme (Fread, 1978) is used for the solution of the 
unsteady flow equations, besides the Newton-Raphson iterative procedure (Amein & 
Fang, 1970) for their sequential solving. The same solution technique is applied to 
the overland flow part. For the channel flow, the dynamic wave model, the diffusion 
wave model as well as the kinematic wave model can be applied to solve the St 
Venant equations.

Fig. 5 Schematic representation of a fourth-order stream channel network of a 
watershed which can efficiently be solved either by the overlapping of Y-segments 
which stepwise substitute for the complete network or by sequential and separate 
routing in each channel from the most upstream branch downwards, satisfying the 
continuity requirements at each junctions.

CONCLUSIONS

Current research aims at representing complex landscape surfaces and the flow over 
those surfaces. The concept of the stochastically averaged flow dynamics, leading to 
extended overland flow equations based on the kinematic wave approximation for 
sheet flow and rill flow, characterizes the controlling surface geometry in terms of a 
limited number of parameters, besides the approach to combine rill flow dynamics 
with sheet flow dynamics. In point scale technology, by avoiding the intensive data 
requirements as well as time-consuming data processing, the spatially averaged 
conservation equation technology uses significantly less information about the 
landsurface microtopography, while the computation is simpler, and hence, faster. 
The plausibility of this technology is also shown by the fact that in practice one never 
has all the necessary information for each point of a detailed numerical scheme laid 
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over a watershed. Estimations of slope gradients for hillslopes by the use of GIS 
storing DTM information with a resolution of 30 X 30m represents the common data 
availability in practical hydrological engineering. Based on such a database, a 
comparison of the new spatially averaged conservation equations with two other 
popular watershed models (EPIC and AGNPS), which are based on simple but very 
practical and powerful approaches (SCS method in the EPIC model and mass balance 
between neighbouring cells—continuity equation considering steady overland flow 
dynamics—in the AGNPS model), will be validated in an Alpine catchment.

The new averaged equations representing the overland flow dynamics are the 
major component within a newly developed hydrological system for the modelling of 
transport processes over complex landscape surfaces. Just considering the flow 
processes within a watershed, the overland flow part was linked to the Green & 
Ampt based infiltration component as well as to a component simulating the unsteady 
flow dynamics in a dendritic stream channel system draining the basin.

Critically analysing the equation for the overland flow dynamics as well as the 
approximate procedure for the infiltration simulation, the physically-based concept 
will more efficiently produce results of sufficient precision in hydrological 
engineering applications in comparison to other physically-based approaches. Merely 
the simulation of rainstorms characterized by several peaks with significant dry 
periods in between the peaks (also considering large variation in intensities), limits 
the application of this concept. The assumption of a rigid wetting front in the case of 
a Hortonian overland flow situation (storm intensity > vertical infiltration rate at 
saturated soil conditions) is valid. But the concept shows deficiencies during single 
storm situations where the rainfall intensity of a later peak is smaller than that of a 
previous peak and/or the vertical infiltration rate of the saturated soil. In such 
situations a significant hysteresis effect regarding the pF-curve can occur, strongly 
depending on the soils. However, in dealing with storm events of strongly varying 
intensities an adapted infiltration approach has to be considered.

The flow dynamics in the channel network are substituted by Y-segments. The 
diffusion wave approximation of the St Venant equations can result in less precision 
near the junction of the Y-system, as the effect of local and convective acceleration 
due to interacting channels can’t be considered by this type of model. The kinematic 
wave approximation shows the inability to account for backwater effects from 
downstream. Only the full dynamic wave model accounts for the complete flow 
dynamics. However, reasonable results combined with efficient computation needs 
the correct evaluation of the expected flow situation in the stream channel network.

In general it can be stated that models based on the spatially averaging 
technology of conservation equations offer a powerful and versatile hydrological 
tool. Although an erosion as well as a nutrient transport component for the presented 
watershed system based on the same averaging principles has recently been 
developed, the potential of the new technology has not yet been fully exploited. In 
particular climatic and/or groundwater modelling may prove a promising field for 
further developments and applications.
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