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Abstract This paper illustrates the validation of a quasi three-dimensional 
model of overland flow and soil erosion phenomena by comparing numerical 
investigations with the results of an ad hoc designed field experiment. The 
model couples a shock capturing finite-volume approximate solution of a 
kinematic wave and soil transport rill model with a two-dimensional finite 
element solution of a variably saturated Richards’ equation on the vertical 
plane perpendicular to the rill. The rill is 2 m long on a sandy hill with a 9% 
slope. Preliminary results show a good agreement between measured and 
simulated discharges.

INTRODUCTION

Rill erosion is one of the most important processes responsible for soil loss and 
sediment production. Its hydraulics behaviour has been studied in detail in recent 
works. Many experimental investigations have tried to point out the main parameters 
in the rill erosion process (e.g. Nearing et al., 1997), but only in a few papers are 
experimental data compared with physically-based models of the whole surface­
subsurface system (Hairsine & Rose, 1992; Sharda & Singh, 1994).

In this preliminary work, we illustrate the results of an experiment investigation 
suitably designed for the validation of a numerical model, which couples a surface 
channel model, a subsurface variably saturated soil model and a surface sediment 
transport model.

THE MODEL

In the present section the complete system of equations is presented. All the 
equations are formulated according to the same system of coordinates, which 
assumes that the horizontal coordinate x is oriented normal to the rill direction, the 
coordinate y is downward oriented along the rill direction and the coordinate z is 
downward oriented in the direction normal to both x and y (Fig. 1).
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Fig. 1 Geometrical description of the rill.

The overland flow (Sharda & Singh, 1994) is described by the nonlinear 
hyperbolic equation:

dh « dh
~— + amh”1 ~ = i(t)-q(t) (1) 

where h is the water storage per unit area [L], i the rainfall intensity [L T1], q the 
infiltration flux [L T1], a [L2 m T1] and m [-] are overland flow parameters (m = 5/3 
in the case of turbulent flow).

The subsurface flow in the variably saturated zone is described as reported in 
Paniconi & Putti (1994) by:

d\u 
(2)

which is also known as Richards’ equation. In this equation, \|/ is the matric potential 
(L), 0 is the volumetric water content (I? L’3), is the hydraulic conductivity 
(L T'1), C(v) = Ô0/ÔV is the capillary capacity (L3 L'4). We considered as the 
retention and conductivity curves the ones respectively proposed by van Genuchten 
(1980) and by Brooks & Corey(1964).

The overland erosion is described by a mass balance equation which states the 
conservation of the eroded soil transported by the rill flow:

in which Cs is the volumetric sediment concentration (L3 L’3), A is the flow cross- 
sectional area, Q is the liquid discharge (L3 T1) and e(y, f) is the rate of erosion of 
the soil bed (L3 L1 T1). This latter term is generally composed of two parts, the first 
one, which accounts for the rain splash contribution and the other one for the 
hydraulic drag onto the bottom of the rill. In our experiment we do not have the rain 
contribution, whilst the hydraulic one is given by:

eU0 = Cg(Cmax -C,)A (4)

where cg is a transfer rate coefficient computed by data regression, and Cmax is the 
concentration-at-equilibrium transport capacity, given by some empirical relations.
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THE NUMERICAL SOLUTION

The overland flow equation is solved by using a second-order Godunov-type shock 
capturing scheme. Let us introduce a partition of the domain of computation (a,b) for 
the coordinate y in N subintervals [y, - Ay/2, y, + Ay/2] of equal length Ay, where 
the nodes of the partition y, are also equally spaced by Ay. Equation (1) is then 
reformulated in an integral conservative form on each subinterval:

fy^+tsy/l dh P>i+tyyl2 df (h) , [yi+^y/2
—dy+ . dy = q dy (5)

Jy,-Ay/2 Qt ty..^y/2 Qy ty¡-tyyl2

where f(/z) = a hm is the physical flux function. The discretized form of equation (5) 
is:

l = «5)

where hi and q¡ are the zth cell-averaged values of the conserved quantity h and the 
source term q and /.+1/2 is the numerical flux function evaluated at the cell interface 
between cells i and i + 1. A MUSCL piecewise-linear reconstruction of the 
approximate solution, monotonized by Colella’s limiter, is used to estimate fj+y2 
(Colella, 1990). The space-discretized equation is advanced in time by applying a 
second-order-in-time explicit Runge-Kutta scheme, conditionally stable according to 
a Courant-Friedrichs-Lewy constraint.

The Richards’ equation is numerically solved by a finite element approach, 
which is summarized in the current section. For a detailed presentation of the 
method, when applied to groundwater flow and transport problems, we refer the 
reader to Pinder & Gray (1977).

The approximate solution ly (x, z, t) of the Richards’ equation at any time t in the 
spatial domain Q e R X R is given in equation (7) as a linear combination of the 
basis functions N¡ = N¡(x, z). These latter ones forms the set of basis functions for 
the linear interpolation with Lagrangian polynomials on the n nodes of a mesh 
partition of Q into p elements:

<¡7 = ^V/(0^z(*> z) for (x,z)gäx7? (7)
/

Substituting in the Richards’ equation, we generate a residual L(v) which is 
minimized by imposing the orthogonality to the functions Nt

££(v)2V,dQ = 0 , l = l,n (8)

We assume for simplicity that the coordinate directions are parallel to the principal 
hydraulic anisotropy directions, so that the off-diagonal components of the conducti­
vity tensor are zero. The final system of the spatially-discretized equations is:

<3(vî/)
+ + = 0 (9) 
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where H(\¡j) , P(v), and #*(v)  respectively accounts for the hydraulic 
conductivity, the capillary capacity, and the gravity terms, the latter including also 
the boundary conditions. Equation (9) is advanced in time by making use of a 
weighted finite difference scheme, which yields as the final expression:

í pk + v\ f pk + v A
vHk+v + —— yk+} = -— - (1 - v)Hk+v R/ + q *k+v (ip) (10)

V &tk / A h /

where Hk+V — H(\yk+O) , P‘” = P(\\fk+V), q* k+v = q*(yi k+v). The approximate 
solution at the intermediate time level v is given by v¡/+v = v\g* +1 +(1- v)\¡/A. The 
weighting factor v is usually chosen such that V2 < v < 1 ; the standard choices are v 
= V2 for second-order Crank Nicolson scheme and v = 1 for first-order backward 
Euler scheme. The nonlinearities in equation (10), due to the dependence of the 
terms H, P, and q*  upon the current approximate solution \\Jk+1, demands for some 
special numerical treatment, such as Picard or Newton iterative methods (Paniconi & 
Putti, 1994).

Equations (1) and (2) are coupled through the water balance at the interface: the 
water allowed to infiltrate by the subsurface flow equation gives a contribution as a 
sink term in the overland flow equation. Evaporation effects are not considered in the 
present work, since preliminary evaluations ascertained the possibility of neglecting 
them. The coupling between overland and subsurface flow equations generally 
introduces a stiffness, which is strictly related to the physical interaction between the 
two systems. Some special cares in choosing the numerical approximation methods 
must be carefully deserved in such a critical situation, by adopting suitable iterative 
solution schemes. However, stiffness is less crucial when the soil is not excessively 
dry, as in the range we considered in our numerical investigations, and the following 
simplified algorithm can be applied successfully.

At the /cth-step in time:
(a) advance from f to Z +1 equation (1) and evaluate the first approximation of /?+1 as 

a function of y;
*

(b) advance from f to equation (2) using the previous estimate of h(y) as a 
boundary condition and evaluate = (¡)(x,z) ;

(c) estimate the infiltration fluxes from the surface to the subsurface system;
(d) advance again from ? to Z^+1 equation (1) taking into account the water sink term 

calculated in (c) and evaluate the final h .
Overland transport phenomena are described by a hyperbolic equation which is 
formally very similar to that for overland flow. The former equation can thus be 
spatially and temporally discretized by the same methods adopted for the latter one, 
i.e. by a shock capturing high-order Godunov-type scheme.

EXPERIMENTAL PROCEDURE

The preliminary experiments which are presented in this work were performed on a 
sandy soil with a natural slope of about 9%. The soil consists of about 20% coarse
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Fig. 2 Vertical section of the rill.

sand, 40% fine sand, 20% very fine sand, 5% coarse silt, 10% fine silt, 5% of clay. 
The constitutive hydraulic soil relations—retention and unsaturated conductivity— 
were determined by two 4 m2 drainage tests at less than 50 m distance. The soil 
surface was worked to a seedbed-like condition.

The rill was 2 m long. The inflow rates were measured by a flowmeter, were 
constant in each test and their values are between 15 and 60 * 10’3 m3h4. An 
aluminium channel with triangular section and 4.5% slope was used upstream from 
the rill for regularizing the stream. Energy dissipation meshes were provided at the 
inlet of the rills.

Six tensiometers were placed at two distances from the axis of the rill and in 
three transversal sections (Fig. 2). Two 8-mm-diameter stainless steel rods were 
inserted parallel to the rill axis at 9 cm depth. They were connected to a TDR which 
was logging every minute the volumetric soil moisture data.

The total mass discharge rate was measured by a load cell at the lower end of the 
rill. The sediment weight was measured after the trials.

The velocity measurements were made by using a NaCl salt-tracing technique: 
three pulses were emitted in each experiment, respectively at the beginning, at the

t[s]
Fig. 3 Volume of water vs time (incoming discharge = 45 m*10'3 h'1).
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t[s]

Fig. 5 Volume of sediment vs time (incoming discharge = 45 m*10'3 h'1).

Fig. 6 Discharge of sediment vs time (incoming discharge = 45 m*10’3 h1).
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mean time and at the end at the upper longitudinal side of the rill; the peak in 
electrical conductivity was detected at the lower longitudinal side of the rill with the 
two electrodes of a multimeter connected to a PC. A ruler was used for measuring 
the width of the stream.

RESULTS AND DISCUSSIONS

Figures 1-6 show good agreement between experimental and numerical results when 
the upstream water discharge was 45 * 10'3 m3 h1 and the pressure head in the soil 
was about 10 cm.

These preliminary results show that the present approach allows an effective 
numerical simulation of rill soil erosion phenomena. Nevertheless some 
improvements in the numerical model are required in order to treat low discharges 
and drier initial conditions. Also, the field experiments should provide the sediment 
discharge vs time curve.
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