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Abstract A new generation of simulation tools for modelling soil erosion, 
sediment transport and deposition by overland water flow in complex 
landscapes is presented. The simulations are based on the solution of 
bivariate continuity equations describing water and sediment transport over 
3D terrain with variable climatic, soil and land-cover conditions. The 
underlying equations are solved by advanced computational approaches 
based on stochastic projection techniques (Green’s function Monte Carlo), 
providing the robustness and flexibility necessary for complex conditions and 
multi-scale implementation with spatially variable accuracy/resolution. The 
processing, analysis and visualization of data and results are performed using 
an emerging multidimensional dynamic GIS technology. The possibilities of 
using the simulations as a tool for finding optimal land-use patterns with 
minimized erosion risk are evaluated by comparing computer optimized 
land-use scenario with the traditional land-use design.

INTRODUCTION

Effectiveness of land management decisions aimed towards preventing negative 
impacts of soil erosion in complex landscapes can be significantly improved by 
detailed predictions of erosion and deposition patterns for proposed land-use 
alternatives. Advances in GIS technology stimulate the replacement of traditional 
lumped empirical models by process-based distributed ones (Moore et al., 1993; 
Maidment, 1996; Saghafian et al., 1995; Suri & Hofierka, 1994) which have a 
potential to provide the needed predictions. In spite of a significant progress in this 
area of research, applications of distributed models are still rather laborious and 
often results do not have sufficient detail, accuracy and realism for basin-scale land 
management purposes. In this paper, we try to address some of these problems by 
focusing on:
(a) description of processes by “first principles” relations in a bivariate form 

allowing us to incorporate a full impact of complex terrain, soil and cover 
conditions;

(b) use of robust solvers (Green’s function Monte Carlo) which minimize the manual 
preprocessing of data and work efficiently on parallel architectures;

(c) investigations of computer simulated scenarios for finding optimal land-use 
patterns with minimized erosion risk;

(d) investigation of multi-scale implementations of the above-mentioned robust 
solvers for studies of areas with variable accuracy and resolution;
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(e) increase efficiency by extensive use of GIS for processing, analysis and 
visualization of the data and results, as described in detail by Mitasova et al. 
(1995); Mitas et al. (1997).

METHODS

Water and sediment transport

The model used in this paper is described by Mitas & Mitasova (1998), therefore 
here we briefly present only its principles. A bivariate shallow water flow continuity 
equation for a rainfall event (e.g. Saghafian et al., 1995) is given by:

dh(v,t)—^ = z;(r,0-V-[/2(r,0v(r,0] (1)

where /z(r,r) [m] is the depth of overland flow, z'e(r,i) [m s’1] is the rainfall excess, 
v(r,i) [m s’1] is velocity and r = (x,y) [m] is the position. The equation (1) is coupled 
with the momentum conservation equation (in the diffusive wave approximation) 
which together with the Manning’s relation between the depth and velocity create a 
closed system of equations. The steady-state form of equation (1) is given by:

g
--V2[/z5/3(r)] + V.q(r) = z;(r) (2)

where q(r) [m2 s'1] is the water flow per unit width and the diffusive wave effects are 
incorporated approximately by the term ocV2[/z5/3(r)].

Overland water flow is the driving force for hillslope erosion which includes 
sediment entrainment, transport and deposition. The continuity of sediment mass is 
given by:

ö[p c(r,ñh(r,ñ] co 9
---- '---- -- --- --  — V2 [p s.c(r, r)] + V • q.s (r, t) = sources - sinks = D(r, r) (3) 

where q/r/) = p/?(r/)q(r,i) [kg m'1 s'1] is the sediment flow rate per unit width, 
c(r,i) [particle m'3] is sediment concentration, p^ [kg particle'1] is mass per sediment 
particle, and co [m2 s'1] characterizes local dissipation (diffusion) processes. For a 
steady-state case the equation is:

co 0
- y V [p yc(r)/z(r)] + V • q s (r) = D(r) (4)

The source/sink term D(r) in equation (4) is similar to the one used by Foster & 
Meyer (1972), namely D(r) = a(r)[T(r) - |q/r)|], where T(r) [kg m'1 s'1)] is the 
sediment transport capacity, o(r) = Dc(r)IT(r) [m1] is the first-order reaction term 
and Dc (r) [kg m'2 s'1] is the detachment capacity. Both T(r) and Dc (r) are functions 
of shear stress (Flanagan & Nearing, 1995). In addition, we also tested a new form 
of T(r) which depends on stream power, as suggested very recently by Nearing et al. 
(1997).
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Multi-scale/spatially variable Green’s function Monte Carlo method

In this section we outline the solution of the above presented transport by stochastic 
techniques with variable resolution. Because of space constraints, we consider only 
the steady-state cases given by equations (2) and (4), however, methodology is 
similar also for the time-dependent cases. The equations (2), (4) have a general form 
in which a linear differential operator 0 acts on a nonnegative function y(r) (either 
/z(r) or psc(r)h(r)), while on the right-hand side, there is a source term S(r):

<5y(r) = S(r) (5)

Using the Green’s function G(r,r',p) the solution can be expressed as:
00

y(r) = j ju(r,r',p) S(r') dr'dp (6)
0

while G(r,r',p) is given by the following equation and an initial condition:

dG(r,r',p) = G(r,r',0) = 8(r - r') (7)
dp

where 8 is the Dirac function. In addition, we assume that the spatial region is a 
delineated drainage basin with zero boundary condition which is fulfilled by 
G(r,r',p).

Equations (1-4) can be interpreted as Fokker-Planck stochastic processes 
(Gardiner, 1985) with diffusion and drift components. Such an interpretation opens 
new possibilities to solve these equations through a simulation of the underlying 
process utilizing stochastic methods (Gardiner, 1985). This type of Monte Carlo 
approach is one of the modem alternatives to finite element or finite difference 
approaches and is being explored in computational fluid dynamics or in quantum 
Monte Carlo methods for solving the Schrödinger equation (see Mitas, 1996; and 
references therein). Very briefly, the solution is obtained as follows. A number of 
sampling points distributed according to the source S(r') is generated. The sampling 
points are then propagated according to the function G(r,r',p) and averaging of path 
samples provides an estimation of the actual solution y(r) with a statistical accuracy 
proportional to where M is the number of samples. An animated illustration of 
this method can be found in Mitas et al. (1997). The Monte Carlo technique has 
several unique advantages when compared with more traditional methods. It is very 
robust and enables studies for spatially complex cases with the minimum manual 
preprocessing of input data. Moreover, rough solutions, which identify the major 
sediment concentrations and erosion/deposition patterns can be estimated quickly, 
allowing us to carry out preliminary quantitative studies or to rapidly extract 
qualitative trends by parameter scans. In addition, Monte Carlo methods are tailored 
to the new generation of computers as they provide scalability from a single 
workstation to large parallel machines due to the independence of sampling points. 
Therefore, the methods are useful both for everyday exploratory work using a 
desktop computer and for large, cutting-edge applications using high performance 
computing.
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Furthermore, solution through the Green’s function given by equation (6) can be 
elegantly reformulated for accommodation of spatially variable accuracy and 
resolution. The integral (6) can be multiplied by a reweighting function W(r):

oo oo

fF(r)y(r) = J JjF(r)G(r,r',^>)S(r') dr'dp = jjG*(r,r',p)S(r')  dr'dp (8)
0 0

which is equal to the appropriate increase in accuracy (W(r) > 1) in the regions of

Fig. 1 Terrain model with (a) traditional land use and linear erosion features, 
(b) simulated sediment flow, (c) erosion/deposition pattern for bare soil in the 
agricultural field and a 70 mm h1 rainfall excess.
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interest while it is unity elsewhere. The function W(r) can change (abruptly or 
smoothly) between regions with unequal resolutions and in fact, can be optimally 
adapted to the quality of input data (terrain, soils, etc.) so that the accurate solution 
is calculated only in the regions with correspondingly accurate inputs. The 
reweighted Green’s function G*(r,r ’,/?), in effect, introduces higher density of 
sampling points in the region with large W(r). The statistical noise will be spatially 
variable as « l/[W(r)y¡M], where M is the average number of samples resulting in the

Fig. 2 Terrain model with (a) observed depths of colluvial deposits, (b) simulated 
sediment flow, (c) erosion/deposition pattern for vegetative cover in the agricultural 
field and a 20 mm h'1 rainfall excess.
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accuracy increase for the areas with W(r) > 1.
Large areas are often characterized by data with variable resolution and the 

above multi-scale formulation is able to make the best use of such heterogeneous 
data. Another reason why one would like to change the resolution and accuracy is the 
desire of the user: very often the area of interest is rather small, however, it requires 
inputs from a much larger region. The system of equations (1)—(4) describes the 
water and sediment flow at a spatial scale equal or larger than an average distance 
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Fig. 3 Terrain model with (a) computer designed land use, (b) simulated sediment 
flow, (c) erosion/deposition pattern for bare soil in the agricultural field and a 70 
mm h 1 rainfall excess.
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between rills (i.e. grid cell size > 1 m) and therefore the presented approach allows 
us to perform landscape scale simulations at variable spatial resolutions from one to 
hundreds of metres, depending on the complexity and importance of the subregions 
studied.

The presented model was implemented as an independent computational module 
named SIMWE (SIMulation of Water Erosion) and linked to the GRASS GIS.

RESULTS

High resolution erosion and deposition patterns in spatially complex conditions

We have evaluated the capabilities of the presented model using an « 1 km2 subarea 
of the Scheyern experimental farm (Auerswald et al., 1996). The measured elevation 
data were interpolated to a 2 m resolution DEM by regularized spline with tension 
(Mitasova & Mitas, 1993) and land cover and soil data were used to estimate 
erodibility and transportability parameters based on the literature (Foster & Meyer, 
1972; Flanagan & Nearing, 1995).

First, we have applied the model for traditional land-use (Fig. 1(a)—please note 
that colour versions of figures are available at: 
http : //www2. gis. uiuc. edu :2280/modviz/papers/iahsav30. html) for two different 
situations: (a) dense grass in the meadow area, bare soil in the arable area and an 
extreme storm event; (b) vegetation cover everywhere and a lower intensity rainfall 
event. We compared the results of simulations with spatial distributions of observed 
colluvial deposits (Fig. 2(a)) and linear erosion features digitized from aerial 
photographs (Fig. 1(a)).

For case (a), prevailing detachment limited erosion is predicted for the bare soil 
area, due to the high transporting capacity of fast moving water. The net erosion 
D(r) « Dc(r) and almost all detached sediment is transported to the stream while 
deposition is restricted to small concave areas and channels (Fig. 1(b),(c)). This 
represents a situation close to the one observed after an extreme storm event in 1993 
when extensive rilling occurred, with only 7% of eroded sediment deposited within 
the area (Auefswald et al., 1996). For the second case with smaller transport 
capacities, the erosion process is close to sediment transport capacity limited case 
when I qXr) I « T(r), and the net erosion/deposition rate D(r) « V [T(r)s0(r)], where 
s0(r) is the unit vector in the steepest slope direction. The erosion rates are lower and 
the model predicts large extent of areas with deposition (Fig. 2(b),(c)). Such 
behaviour is close to the observed distribution of colluvial deposits (Fig. 2(a)). For 
this case, terrain shape plays an important role as demonstrated by a theoretical 
relationship (Mitas & Mitasova, 1998) for net erosion/deposition

D(r) = KtPw g {[VA(r)]s0(r) sinß(r) - A(r)[K/r)4-Kz(r)]}

where Kp(r) is the profile curvature, Kz(r) is the tangential curvature (for curvature 
definitions see Mitasova & Hofierka, 1993). From the point of view of land-use 
management, it is important to note that for both simulations (a), (b) the highest rates 
of net erosion as well as net deposition were predicted in hollows with high 
concentrated sediment flow (Figs 1(b),(c); 2(b),(c)). Field measurements confirm that
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Fig. 4 Illustration of the Green’s function Monte Carlo method and its multi-scale 
implementation: (a)sediment flow rates estimated with 20 000 sampling points and 
(b) 2 million sampling points; (c) net erosion/deposition estimated with spatially 
variable resolution and accuracy.

this area has the thickest layers of colluvial deposits but also large linear erosion 
features were observed here after a strong storm (Auerswald et al., 1996). The 
second highest erosion is predicted on upper convex parts of hillslopes where the 
highest loss of radio-tracers and the lowest yields were observed (Auerswald, 
personal communication). Increased erosion is predicted also for bare narrow stripes 
below the grass areas, where water accelerates after depositing the sediment. The 
major difference in spatial patterns between the two modelled cases is the spatial 
extent of erosion/deposition. In the simulation (a) 93% of the area experienced 
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erosion while simulation (b) predicted erosion only for 70% of the area, with extent 
of deposition close to the observed spatial distributions of colluvial deposits. 
Deposition was also predicted at the upper edges of meadows, where the rills follow 
the borderline between the grass and bare soil areas and where deposits were found 
in the upper convex part of the grassy hillslope (Figs 1 and 2).

We have investigated the possibility of employing the simulations for improving 
erosion prevention using the following approach. For the traditional land use, ~ 30% 
of the area was covered with grass. To find a more effective distribution of this 
protective grass cover, we used the presented model to identify areas with the highest 
erosion risk assuming uniform bare soil and then redistributed the same extent of 
grass cover to these high risk areas (Fig. 3(a)). The simulation of erosion/deposition 
for the new, computer generated land-use design demonstrates its potential to 
dramatically reduce erosion and sediment loads, especially in hollows (Fig. 3(b),(c)). 
It is interesting to note that the land-use design obtained by this rather simple 
computational procedure, based on elevation data, has several common features with 
the sustainable land-use design proposed and implemented in 1993 at the farm 
(Auerswald et al., 1996).

Simulations with spatially variable resolution and accuracy for large areas

To illustrate the capability of the presented approach to simulate erosion/deposition 
patterns at spatially variable accuracy/resolution we have applied the model to a 
36 km2 mountainous area at 20-m resolution, with more detailed predictions (10-m 
resolution) within a potential' high intensity use 7 km2 subarea targeted for rehabilita
tion. Detailed solution for the entire area would require about 2 million samples 
applied to 360 000 grid cells. With spatially variable resolution significant savings in 
processing time can be achieved by using only 20 000 samples for 75 000 cells cover
ing the entire study area at 20-m resolution, and a higher density sampling (2 million) 
used only for the targeted area represented by 50 000 cells (10-m resolution). The 
predicted sediment flow and erosion/deposition patterns have a detectable level of 
noise in low resolution areas, while the distributions in the targeted subarea are 
modelled with a high level of detail (Fig. 4). Further investigation will be performed 
into the error propagation from low to high resolution areas and its dependence on 
the location of subarea within the basin structure.
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