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Abstract It is assumed that water flow in porous media is proportional to the 
gradient of some potential, multiplied by either the saturated hydraulic 
conductivity coefficient or the unsaturated hydraulic conductivity coefficient. 
This is true if the porosity of the medium is not very high and its specific 
surface is not very small. However, for some porous substances such as 
gravels and fractured rocks, and also for soils penetrated by the burrows of 
earthworms and other soil animals, the law of the linear relationship between 
water flow and potential is disturbed. For the generalization of the water 
flow in media with a dual porosity, it is expedient to deduce the general 
expression in a vector form, as in the general case, the spatial problem is con­
sidered. Theoretical investigations of the water flow in porous media on the 
basis of the mechanics of the multiphase and multicomponent media, have 
made it possible to get the mathematical model of the water flow in the con­
sidered media. The model is presented by the equations of movement of phases 
and mass balance in vector form. The expression for the saturated hydraulic 
conductivity coefficient has been obtained with the characteristics of vital 
activity of the vital phase in porous media being taking into account. The 
numerical realization of the model was made for serozem soils in central 
Asia. Comparison between the calculated values and the measured ones have 
shown the acceptable accuracy of the model and its applicability for practical 
purposes.

INTRODUCTION

Many investigators, including hydrogeologists and soil scientists, face the problem of 
water movement through porous media. It is usually considered that the water flow in 
such media is proportional to a gradient of some potential which is multiplied by 
either the saturated hydraulic conductivity coefficient, or the unsaturated hydraulic 
conductivity, according to conditions. That is how matters stand if the porosity of the 
medium is not very high, and the specific surface is not very small. However, for 
some media such as pebbles, gravel, fractured rocks and soils pierced by burrows of 
earthworms and other animals, the law of the linear relationship between water flow 
and the potential breaks down. In such a situation it is desirable to derive the
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expression for the water flow in a porous medium in vectorial form (as in the general 
case the spatial problem is studied) applicable both to light and heavy media; i.e. for 
media with weak permeability this expression would be practically linear concerning 
the gradient of potential, and for a medium with strong permeability it would be 
nonlinear. The derivation of the necessary expression which follows is be based on 
the mechanics of multiphase and multicomponent media.

THEORETICAL BASIS

The main characteristics of a multiphase porous medium

Let us choose a small finite volume AL in the porous medium. Let us introduce 
phase index i = 1,3 , which is equal to 1 for the matrix of the medium, 2 for water, 
and 3 for humid air. Let be the volume of zth phase in the chosen volume AV, 

3

then: AV = . The relative phase volume is calculated as:
7 = 1

OC,.
AJ<.
AV (1)

In this case we obtain ^az =1, 0 < a, < 1 .
/=i

Fundamental characteristics of the multiphase medium are the specific surface of 
the phases, ßz and contact between phases, ßz/, through which dynamic and thermo­
dynamic interactions take place. Let ASZ/ be the contact surface of the zth phase with 
the jth in the volume AV. Then:

AS,
<2>

3

The total specific surface of the zth phase is equal to ß, =Xß// • An important 
./=!

characteristic of the multiphase medium is the effective thickness of the phase, 5Z, 
that is equal to the ratio of the phase volume oczAVto its total surface ßz,AV, i.e.:

cc, AK oc,
8, = k —------ = k

ß/AV ßz. (3)

where k is a dimensionless parameter which varies basically from 2 to 3 (Denisov, 
1968, 1978). Next, assume that the matrix is rigid (swelling of the soil matrix due to 
water uptake is not taken into consideration). Defining ßc = ß] i.e. the specific 
surface of the porous medium, according to equation (3) the relationship for the 
characteristic pore size, 8n, is:

8 n = k
1 - OCj

(4)
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The equation of water movement through a porous medium

Let us consider the two cases saturation states of porous medium: (a) the pores are 
completely filled by water and (b) the pores are not completely filled by water (e.g. 
in the unsaturated zone)

(a) Pores are completely filled by water (a3 = 0). Consider the forces affecting 
the volume of water (1 - ocJAV in the porous medium volume:

Gravity
p2(l-a1)gAK = -p2g(l-ocI)gradzAK (5)

where p2 is the density of water and z is the upward vertical coordinate.

Pressure

{- grad [(1 - a, )P2 ] + P2grad (1 - a, )} AV = -(1 - aj ) grad P2 A V (6)

The second term on the left side of equation (6) represents the reaction of pore side 
walls to water pressure.

Viscous friction force This force equals the product of coefficient of the dynamic 
water viscosity and the derivative of water speed at the pore surface (speed is 
directed along the normal to this surface) and the area of this surface. This force is 
defined by the following expression:

U, ßj
- ^12p2v2ßc ^-AK = -f p2v2 u2 AV (7)

where u2 is a vector of water speed, v2 is a coefficient of kinematic water viscosity, 
and kn is a dimensionless coefficient of proportionality which is approximately equal 
to 3.

Eddy friction force The absolute value of this force is proportional to the density of 
water, the pore surface area and the water speed squared. The force is directed 
against the flow and equals:

-¿22p2ßc|w2|w2 AL (8)

Inertia force The inertia force is the product of the water mass and its acceleration 
and is negative

(9)
dw9 du,

-(l-ai)p2 AK—= -(l-a!)p2 —+ (w2V)w2 AV
dw
dt

Adding all the forces together and dividing this sum by (1 - aj)p2AV and making 
some simple modifications, we obtain the equation of water movement in a porous 
medium when the pores are completely filled by water.
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^- + (m2V)m2 =-ggrad(z+P2*)--^-^v 2 +^-8„|w2|jM2 (10)

Here P2* = P2/Y2» where y2 = p2g.
After the analysis of equation (10) it was concluded that in this equation the 

inertia terms (left part) are significantly smaller than the other ones and, 
consequently, they can be ignored. Then:

^FÍv2 +72’8n|w2|]«2 = -ggrad(z+P2) (11)

ôw v £12 J

It follows from equation (11) that the speed vector w2 is co-linear to 
-g grad(z + P2*).  So, according to vectorial calculation, we can write

w2 = -^ggrad(z+P2’) (12)

Here À is a coefficient of proportionality which is larger than, or equal to, zero, and 
it is necessary to determine it.

Let us substitute equation (12) for equation (11).We can find the expression for 
coefficient X, and in this case the equation (12) will be written as:

-*  ^12 V2

W2“2¿22'ów
k

1 + 4 —
^12

(13)

Water flow through the unit of porous medium surface per unit of time when the 
pores are completely filled by water equals:

q2 ^1-ocJzZ,

or taking into consideration equation (13) we can obtain

^12 V2ßfi 

q2 ~ 2k22 ' k
^22 8W

1+4 — -——
k22 ^2y2

(14)

(15)

For negligible values of the second term of the expression under the root in equation 
(15) comparing with unit (linear flow), equation (15) is written as

72 = - n? • — • grad (z + P*  ) = -A^grad (z + P*  ) (16)
Kl2Pt P-2

Equation (16) for saturated flow coincides with Darcy’s equation (equation (1)) but 
the saturated hydraulic conductivity coefficient is defined in terms of the medium:

¿y2(l-a])3 y2ßcö3* z v___ 1 / i ¿i c n /in\
K*~  k Lt ß2 ~ k k2\i

It follows from equation (17) that the saturated hydraulic conductivity coefficient is 
proportional to the cube of porosity (1 - o^)3 and inversely proportional to the square 
of the specific surface and liquid viscosity p2ßc2. Otherwise, this value can be 
considered proportional to the specific surface of the porous medium ßc and to the 
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cube of the pore radius 8n3 and inversely proportional to the liquid viscosity p2 
(Nerpin & Chudnovskiy, 1967).

£]2V2ß/i

Let us define the first factor of equation (15) as ug = ————, then the equation

of water movement has the final form:

grad(z+P2*)

|grad(z + P2‘)| (18)

When the porosity is high or the specific surface is small, then the linear flow 
equation, equation (16), will produce higher values of flow in comparison to a more 
precise formula, equation (18). Let q2Q be the value of flow with linear filtration. 
Then the ratio of the absolute value of nonlinear flow to linear flow can be derived:

|#2 I / |#20 I — + 2#20 luz -1]/(^20
(19)

The values of these ratios are presented in Table 1.

Table 1 The ratio of nonlinear flow to linear flow for different values of #2(Ag-

0.1 0.2 0.4 0.6 0.8 1.0 1.5
<hl ^20 0.954 0.916 0.854 0.805 0.766 0.732 0.667

(b) Pores are not completely filled by water (oc3 > 1). Introduce the quantity

0 < <p < 1 (20)
(1-ocJ

called the moisture saturation. According to Aravin & Numerov (1953), Bezborodov
& Khalbaeva (1985), Denisov (1968) and equation (3), we have:

(l-ajcp <p <p
1 "T----------ñ (21)

Water pressure in the unsaturated zone is negative and determined by the suction 
potential T2 (Denisov, 1968,1978; Nerpin & Chudnovskiy, 1967):

P2=-f^2 (22)

This potential is the sum of three potentials: the frame potential (attributed to the 
attraction of water by the soil matrix), the meniscus potential (attributed to curvature 
of water surface in unsaturated zone) and the osmotic potential arising from the 
solute concentration of the soil water.

Reasoning similarly and using equations(5)-(18), the expression for water 
movement in a porous medium when the pores are not completely filled by water can 
be derived:
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q2 = -ugQ
1+27äilBrad(z-'1'-)|-1

14 g. à w à £
grad(z-T,)
|grad(z-T2)| (23)

For a negligible value of the second term in equation (23), (the term under the root):

= -K„, grad (z - T2 ) = -KB grad (z - T2 ) (24)

Here KB is the unsaturated hydraulic conductivity coefficient.

MODEL VERIFICATION

In conclusion let us find out how earthworms influence the values of the saturated 
and unsaturated hydraulic conductivity. Let a10 and ßÄ0 be the relative volume of the 
soil matrix and its specific surface in the absence of earthworms, respectively. Let x 
be the length of the burrows of earthworms in the unit of soil volume and be the 
radius of the cross-section of the earthworm burrows. The volume of the soil matrix 
is therefore reduced by 7iö|xßf;0AF. The relative volume of the soil matrix, a15 
then equals:

oc, =
Ar)0-7tô2x%a10AK / x
---------- -------------- = (l-KÖzZ)aI0 (25)

and the specific surface ßfi equals:

ß« =
AS10-K02Xßc0A^ / X 
---------- -------------- =(i - "MP“- (26)

Substituting equations (25) and (26) for the equation of the saturated hydraulic 
conductivity coefficient (17), and after some simple re-arrangement we obtain

1 ^//«io

(l-a10) 

(i-n^x)2 (27)

where ÁTO0 is the hydraulic conductivity coefficient when the burrows of 
earthworms are absent.

In practice it is very difficult to determine the length of the earthworm burrows. 
In practice experimenters count the number of holes on the surface per unit of area, 
j. An approximate relationship between % and j can be expressed as follows:

1
X = 4/J1 +-----L 4Az2j (28)

where Az is the depth of the plough layer.
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Fig. 1 The change of hydraulic conductivity coefficient of soil depending on the 
number of earthworm burrows, the cross sectional-radius of earthworm burrows and 
the porosity of the soil. Porosity: (a) 60%; (b) 50%; (c) 40%. Radius (cm): 
(1) 0.06; (2) 0.10; (3) 0.14; (4) 0.16; (5) 0.18; (6) 0.20.

The order of the values of ßÄ, equation (26) and K®, equation (27) coincide with 
values measured in field conditions with different values ofj, 8Z and a10.

The values of KJ for different j and 8X when the porosity equals 0.60; 0.50 
and 0.40 (60%, 50% and 40%) are given in Fig. 1.
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