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Abstract Modelling sediment transport processes, in particular the 
deposition and erosion of suspended material in reservoirs, is a very 
complex task for two reasons: (a) the St. Venant and the sediment transport 
equations require a large set of parameters (flow and transport parameters, 
initial and boundary conditions, etc.) which are frequently estimated or 
calibrated with few observations of the response quantities of the model; and 
(b) most of the parameters can not be described as deterministic constants or 
functions due to their high variability and irregularity. Therefore, one has to 
describe them as realizations of stochastic variables (or fields) and the state 
variables, such as velocity, water level, bed-level, etc. as stochastic response 
quantities. Consequently the validation of almost all models is impossible in 
the sense that the response quantities will never be exactly determined, and 
fluctuations in the model output have to be accepted. In this paper, the 
authors are interested in the latter problem, namely the stochastic nature of 
the data and the results of the simulation. A simple one-dimensional non­
steady flow and transport model depending on many stochastic parameters 
was studied. The objective function is the quantity of deposition (resp. 
erosion) which is now a stochastic response variable. Its mean and the 
relative sensitivities to the input parameters are under consideration. For this 
purpose, the well known first order reliability method (FORM) as well as 
Monte Carlo simulations are applied.

INTRODUCTION

Engineering predictions of sediment transport in open-channel systems, and 
especially unsteady flow conditions, is fraught with uncertainties due to spatial and 
temporal variability, measurement errors, limited sampling of the parameters, 
boundary and initial conditions, and sink/source terms. During recent years many 
sophisticated mathematical models have become available to calculate unsteady flow 
in one, two or three dimensions. These models will be coupled with transport 
equations for bed load or suspended load to calculate, for example, long term 
behaviour of morphological changes of rivers, sedimentation of reservoirs, 
transportation of pollutants, and so on.

The problem is not only the accurate calibration of the model but also the 
acquisition of realistic values for the various input parameters. For most of the 
parameters one has to consider their stochastic nature, and therefore they have to be 
described as random variables or spatio-temporal random fields. The results obtained 
depend on the stochastic nature of the input variables. It is important to know how 
simultaneous inaccuracies of the various input parameters influence the result and to 
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identify those parameters which determine the process most.
The well known first order reliability method (FORM) is a useful tool to assess 

the influence of stochastic input variables on the calculated result. In this paper we 
want to show how this method can be applied to judge quantitatively the influence of 
different parameters. We applied this method to solutions for deposition and erosion 
of suspended material under unsteady flow conditions. For comparison we also 
performed corresponding Monte Carlo simulations.

HYDRODYNAMIC MODEL

The hydrodynamic model consists of a simple one-dimensional, nonlinear model for 
prediction of water level and vertically averaged horizontal velocity (Meselhe & 
Holly, 1997). The model is based on the depth averaged continuity equation:

dA dQ 
dt dx (1)

and the depth averaged momentum equation:

ÔO d Q2 
(2)

(3)

(4)

where h(xj) = water depth. Finally, So = dz/dx is the bottom slope with z = bed 
level, and Sf is the friction slope which can be defined by the following expression:

ç = ^2g|g|
./ ^2^4/3

where R = hydraulic radius (ratio of the cross-sectional area to the wetted perimeter) 
and n = Manning’s friction coefficient.

where A = wetted cross-sectional area; Q(x,f) = discharge; g = gravitational 
acceleration and = the hydrostatic-pressure force term that can be expressed as:

h(Jf dA
h = J (/z-n)—(x,i)dr] 

SEDIMENT TRANSPORT MODEL

If one-dimensional conditions do exist, it has generally been assumed that the 
transport and deposition of suspended sediment could be represented by the 
convection-diffusion equation:

a a d dc\— (G4) + — (uAC)-— [fcxA — +S,-Se = 0 (5)
dt ox dx\ ox J 

where C = concentration of the transported solute; u = Q/A, the cross sectional 
mean flow velocity; kx = longitudinal dispersion coefficient and Sd and Se = 
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sink/source terms for deposition and entrainment of sediment, respectively. The 
deposition rate Sd can be expressed as:

Sj = pvsC kg m‘2 s1 (6)

where p= probability of deposition or bed incorporation, because only a part of 
sediments that settle onto the sediment bed will be incorporated into the bed. The 
settling velocity vt of the grain class size is calculated using the formula of Cheng 
(1997):

v =^-(J25 + 1.2A2 -5)1'5 ms’1 (7)
d,n

D*  d„, (Pr
< p(F«r )

(8)

_________ 0.00178_________
(1 + 0.0337T + 0.00022 T2) (9)

where v = kinematic viscosity of fluid; T = fluid temperature; D*  = dimensionless 
particle diameter; pw and pF = the density of water and sediment, respectively.

The probability p of particles remaining deposited is given by Krone et al. 
(1977):

'lb Id

"lb > 'Id

(10)

where t(} = critical shear stress for deposition and %b = bottom shear stress. The 
change of the bed level ázd by deposition of sediment at every time step dr is 
calculated by:

dZi/ S(f
(Pf-Pft) 

Pf (Pb ” Pjf)
m (11)

where pß = bulk density of the deposited material.
For the entrainment model Se, a formula due to Ariathurai & Arulanandan (1978) 

is used: 

Tb
kg m-2 s (12)

where E = an erodability coefficient and xe = critical erosion shear stress. Erosion 
occurs when Tb > xe and erodable sediment exists at the bottom. The potential 
decrease of the bed level caused by erosion of sediment during a time interval dr is 
calculated by the formula:
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(13)

(14)

J _ ç (Pf P»1) J, 
dzc — ó e —-------- r di m

PfÎPB-Pfr)

If the available thickness of the deposited sediment layer is less than dze then all of 
the sediment is entrained.

The bottom shear stress t6 can be calculated by the formula
7 7

Pwgft M NT -2
= hU3 ' Nm

where g = acceleration due to gravity and n = Manning’s friction coefficient.

HYPOTHETICAL ENGINEERING PROBLEM

To illustrate a solution for uncertainty of deposition caused by stochastic input 
variables, a simple one-dimensional hypothetical engineering problem was defined, 
which was not intended to calculate a real situation. The purpose was only to show 
how uncertain input parameters could influence the calculated result.

For analysis we assumed a rectangular channel with a length of 10 km, an initial 
bed slope of 1/1000 and a channel width of B = 100 m. A barrage with a height of 
Hw = 8 m was defined as the downstream end of the reach. The channel’s length of 
10 km was divided into 100 computational reaches of Ax = 100 m each. The initial 
condition of the backwater was calculated for a constant inflow of Q = 298 m3 s1 and 
a Manning friction coefficient of n = 0.03 s nT3. The discharge over the weir was 
calculated by the formula:

Q = l^2g\iB{h + z-HS/2 m3 s1 (15)

with a discharge coefficient pi = 0.7. For h + z - Hw < 0 the discharge Q was set to 
zero (Fig. 1).

The objective of our analysis was to calculate the time dependent amount of the 
deposited sediment for a certain inflow hydrograph (Fig. 2) and to check the 
propagation of the uncertainty of the calculated amount due to stochastic input 
parameters and to identify the relative sensitivity of the underlying input parameters.

For calculation of the sediment inflow into the reservoir a sediment rating curve 
is needed. The relation between flow discharge Q and suspended load concentration 
C at the inflow was estimated by the formula:

c = ■¿¡^1 kg m‘3 (16)

where s and r are empirical constants.

NUMERICAL SOLUTION OF THE PARTIAL DIFFERENTIAL EQUATIONS

The system of the coupled and nonlinear equations (1)-(14) with suitable initial
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x [km]
Fig. 1 Sketch of the initial conditions.

conditions has to be solved numerically. The system is discretized in time, decoupled 
and then discretized in space. We suppose that the state variables and the parameters 
of the system are known at the time in; we compute these variables for the time 
tn + dt using the following steps:

The hyperbolic equations (1) and (2) combined with the corresponding boundary 
conditions (15) and (16) are first solved to compute the hydrodynamic quantities. The 
numerical solution makes use of an implicit finite difference scheme (MESH) 
developed by Meselhe & Holly (1997). The algorithm is based on a two step, 
predictor-corrector procedure. The predictor step consists of a forward sweep that 
carries the effect of upstream boundary conditions (16) followed by a backward 
(corrector) sweep that propagates the effect of downstream boundary conditions (15).

Using the solutions of u and h, we solve the sediment transport equation (5) with 
an implicit non-centred finite difference scheme. The results of (5) are used to 
compute the quantity of deposition or erosion and the bed level z given by equations 
(6)—(14).

Fig. 2 Inflow hydrograph.
time [days]
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In our scheme, we allow the transport equation (5) to have different (in general 
bigger) time steps than the one needed for the hydrodynamic equations since the 
variation in the bed level is in our case small compared to the variation in u and h. 
The time step used for the solution of the hydrodynamic equations is of the order of 
90 s while the one used for the transport equation is 360 s. In addition, to minimize 
artificial diffusion when solving the transport equation (5), we refine the space 
discretization used to solve the hydrodynamic equations (100 intervals) by dividing 
each interval in to 10 subintervals.

FIRST ORDER RELIABILITY METHOD

(17)

(19)

The first order reliability method, which has been used in the field of structural 
reliability for some time can be applied, in principle, to stochastic problems 
incorporating any amount of probabilistic information, including first and second 
statistical moments, marginal distributions, partial joint distributions, and the full 
joint distribution. The method is suitable for use with either numerical or analytical 
solutions. A great advantage of this method is that information concerning the 
sensitivity of the result to variations of input parameters and their statistical moments 
is an integral part of the first order reliability solution. The method is described in 
detail in the literature (Kitikawa & Der Kiureghian, 1980; Sitar et al., 1987). 
Therefore we will give only a brief description of the method here.

In a general reliability formulation a so called performance function is defined as 
Z = g(X), where X = (X15 X2,... , Xn)T is a vector of random variables describing the 
uncertain parameters of the problem. In the ^-dimensional space of X, the 
hypersurface g(X) = 0 denotes the boundary between “safe” and “unsafe” regions. 
Once a performance function is formulated, the probability of failure is given by:

Pf = P[g(X) < 0 = Fz (0) = Ja (x)dx 
gW<0

in which fx(x) is the joint probability density function (pdf) of X and the n-fold 
integral is over the unsafe region. The exact solution of equation (17) is only possible 
in special cases.

With the first order reliability method however, an approximate solution of 
equation (17) can be achieved by transforming the density functions of the input 
variables X into independent standard normal variables. By an optimization 
procedure the so called ß-point (Hasofer & Lind, 1974) is calculated. This is the 
shortest distance of the performance function g(X) = 0 from the origin. The 
performance function is linearized in that point and the probability is estimated now 
by using the standard normal integral.

Sensitivities with respect to variations of the variables are given through the 
gradient vector of ß. To standardize the variations the preceding gradient vector can 
be scaled by the diagonal matrix of standard deviations D (Der Kiureghian & Liu, 
1985). The unit sensitivity vector is therefore defined as:

= <Axß>D
Y l<Axß?D|
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This vector gives an indication of the importance of each variable X¡.
A simple algorithm to compute ß and y is given in Sitar et al. (1987) and 

presented here. The vector of random parameters X is transformed to a vector of 
standard normal variables as:

Y = rD_1(X-M) (20)

where M is the vector mean of X and D is the diagonal matrix of the standard 
deviations of each component of X. The matrix T = L1 and L is the lower-triangular 
matrix of the Cholesky decomposition of the correlation matrix of the random 
variables X. If we define:

G(Y)Eg(DLY + M) = g(X) (21)

then the unsafe region is also defined by G(Y) < 0. The correlation matrix of the vector 
random variables Y is deduced from the correlation matrix of X (Der Kiureghian & 
Liu, 1985).

To find the shortest distance of the performance function G(Y) = 0 from the 
origin in the standard space we make use of the following iteration:
- choose an initial Vector Y, for example Y = 0;
- compute the gradient vector:

A,G(Y)=
f 8G(y)
I dy} ” ’ dy„ J

(22)

and the unit vector

[a,G(Y)]
1|a,g(Y)|J

- compute the new point

(23)

G(^) 
a'J' + |A„G(p,.)| (24)

if convergence is not achieved set Y = Ynew and compute the new gradient vector 
VyG(Y).
In general the algorithm converges in a few iterations. The distance of the 

solution to the origin is ß = | Y | and the failure probability and the sensitivities are 
given by equations (18) and (19). This algorithm is implemented and tested on simple 
examples given in Der Kiureghian & Liu (1985) and in Sitar et al. (1987).

UNCERTAINTY OF THE INPUT PARAMETERS

Reliability analysis is based on the knowledge of the underlying parameter 
uncertainty. The input parameters for calculation of sediment transport with 
equations (1)—(17) are known to contain considerable uncertainty. However careful 
evaluation of temporal or spatial variability and of the level of uncertainty for these
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Table 1 Assumed stochastic input parameters.

Parameter Probability density 
function

Expected value Variation coefficient resp. 
lower and upper bounds

s normal 0.2 20%
r normal 1.5 10%

log. normal 0.03 x 10’3 m 30%
Pb normal 1700 kg m'3 10%

uniform 1 N m'2 0.5-1.5
'e uniform 2Nm'2 1.5-2.5
E uniform 2 x 10’4 kg nr2 s1 1 x 10'4-3 x IO'4
kx uniform 40 m2 s ’1 0-80
n normal 0.03 m3 s ’ 20%

variables has not been conducted. For a preliminary analysis we used the stochastic 
input parameters listed in Table 1.

The empirical parameters s and r describe the relationship between sediment 
concentration C and water discharge Q (equation 16). These parameters have to be 
measured. For our analysis we chose normal variates with mean values of 0.2 and 
1.5 and a coefficient of variation (CV) of 20% and 10% respectively.

The settling velocity vs of the given size fraction was determined by the 
characteristic grain diameter dm which we assumed to have a logarithmic normal 
distribution. The bulk density pß was set to 1700 kg m3 with a CV value of 10%.

Determination of realistic values for the deposition and erosion terms Sd and Se is 
very difficult, because natural sediments are subject to large variability. The critical 
deposition shear stress xd and the critical erosion shear stress xe as well as the specific 
erodability coefficient E have to be measured. However, variation of xd, xe and E for 
different flow regimes and different types of sediment are inadequately understood 
and data are sparse. Therefore we estimated these values assuming a rectangular 
distribution with upper and lower bounds listed in Table 1.

For the longitudinal dispersion coefficient kx very different values are reported in 
literature (Singh et al., 1987). We assumed as a first approximation lower and upper 
bounds of 0 to 80.

Manning’s hydraulic friction coefficient n is the mean parameter for 
determination of the bottom shear stress Td (equation (14)). Gates & Al-Zahrani 
(1996) reported variation coefficients from 6% to 51%. Here we assumed a mean 
value of |ll(/7) = 0.03 s m’3 and a coefficient of variation CV(n) = 20%. The 
boundary and initial conditions are treated as deterministic values. In a future refined 
analysis the uncertainty of the parameters will be based on real field data, involving 
stochastic boundary conditions and temporal and spatial correlations.

UNCERTAINTY OF PREDICTED DEPOSITION

For the inflow hydrograph (Fig. 2) we calculated a sediment inflow of 3 098 201 t 
after 70 days. The outflow of sediment was 94%, and 6% was deposited. Figure 3 
shows the time dependent deposition/erosion rates calculated with the mean values of
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Fig. 3 Deposition and erosion rates.

the input parameters.
Figures 2 and 3 show the strong relationship between the rate of deposition 

(erosion response) and the boundary condition discharge Q. Each time the discharge 
is high, the erosion rate is high, too and the deposition rate is small.

The integration in time of the combination of erosion and deposition is shown in 
Fig. 4 together with the mean value of the deposit and with the 16% and 84% 
quantiles and the 2.5% and 97.5% quantiles (these correspond to the mean plus and 
minus one and two standard deviations respectively, if the distribution were normal) 
calculated by a Monte Carlo simulation with 5882 realizations of the input 
parameters.

The calculated volume of the deposit shows a very high uncertainty. The 95% 
confidence interval for the deposit after 50 days, for example, has a lower value of 
5251 m3 and an upper value of 498 781 m3. The bounds for the 68% confidence 
interval are 26 252 m3 and 228 283 m3, respectively.

Fig. 4 Deterministic value, mean value and quantiles of the integrated deposit.
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time [days]
Fig. 5 Monte Carlo and FORM calculations of the probability of exceeding a target 
value Do = 1.3/(X).

Figure 5 shows the probability for the deposit of exceeding a target value Do 
which is 30% greater than the deposit calculated with the mean values of the input 
parameters.This probability is computed using two different methods, namely Monte 
Carlo simulation (5882 realizations) and FORM. For the first order reliability 
analysis we used a performance function for the deposit of Z = g(X) - Do where Do 
is a deterministic target value and X is the vector of input variables as shown in 
Table 1. The difference is to our opinion due to the non-linearity which is not taken 
in to account by FORM while the Monte Carlo simulation is rather exact. This 
difference is small (2% to 3%) which gives credibility to FORM. With increasing 
deposition the probability increases and when erosion occurs the probability 
decreases due to the fact that we have to consider the two uncertain erosion 
parameters xe and E.

The normalized sensitivity of the stochastic parameters is given in Fig. 6. The 
legend of Fig. 6 represents the parameters approximately in their order of
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sensitivities. Variability in the three parameters n, dm and xd has a rather big 
influence on the deposition and its variation. The result is less sensitive to the 
parameters pB, s, r and in general the two parameters E and Te have a very small 
influence. This is different in the period between day 10 and day 20. There the 
discharge Q is high and therefore the erosion parameters and E have a bigger 
influence. After the period of erosion, the influence of these parameters decreases. It 
is apparent from Fig. 6 that the diffusion coefficient kx has almost no influence on the 
total quantity of the deposition and its variation.

These results are only valid for the assumed uncertainties of the input 
parameters. More complex problems will arise when considering the spatial and 
temporal variability of the parameters and the stochastic boundary and initial 
conditions, and will result in different sensitivities. In future investigations we will 
use the first order reliability method for interpretation of more complex and realistic 
probabilistic problems based on real field data.

SUMMARY AND CONCLUSIONS

A first order reliability approach to numerical solutions for one-dimensional 
deposition and erosion of suspended sediment using stochastic input parameters for 
unsteady flow conditions has been presented. We analysed a hypothetical one­
dimensional problem. Nine stochastic input parameters were considered and the 
probability of entering a particular limiting state for the deposit for a special inflow 
hydrograph was estimated. We showed that the outcome of the first order analysis 
closely matches corresponding Monte Carlo simulations. With this method we were 
able to evaluate the relative importance of each input parameter at every time for our 
special problem.

The first order reliability method is a practicable alternative to Monte Carlo 
simulations, especially for long time period simulations where Monte Carlo calcu­
lations require very long computer runs. As the next phase of our research, we are 
planning to apply the first order reliability method together with Monte Carlo 
simulations for more complex problems based on real field data, involving stochastic 
boundary conditions and temporal and spatial correlations of the input parameters.
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