
The Role of Erosion and Sediment Transport in Nutrient and Contaminant Transfer (Proceedings of a 
symposium held at Waterloo, Canada, July 2000). IAHS Publ. no. 263, 2000. 269

Modelling cohesive sediment transport in rivers

BOMMANNA G. KRISHNAPPAN
Aquatic Ecosystem Protection Branch, National Water Research Institute, Burlington, 
Ontario L7R 4A6, Canada
e-mail: krish.krishnappan @cciw.ca

Abstract A new model is proposed for the transport of fine sediment in the 
Athabasca River. The model is based on empirical relationships developed 
from laboratory experiments in a rotating circular flume using Athabasca 
River sediment. The model takes into account the differences in the critical 
conditions for erosion and deposition of fine sediment and treats the erosion 
and deposition processes as mutually exclusive. Therefore, under constant 
shear stress, the fine sediment will undergo either erosion or deposition but not 
both simultaneously. Such a treatment reflects the true nature of the cohesive 
sediment transport mechanism. The model may be easily incorporated into 
existing models of contaminant transport, fate and bioaccumulation.

INTRODUCTION

Many of the existing models of transport, fate and bioaccumulation of toxic substances 
in surface waters assume that the transport characteristics of fine-grained cohesive 
sediment are analogous to those of the coarse-grained non-cohesive sediment and 
adopt sediment transport theories that were developed for the latter to treat the former. 
Among the many differences between the two types of sediments, the most crucial is 
the difference in the critical condition for initiation and cessation of sediment motion 
in a flowing medium. In the case of coarse-grained sediment, the critical conditions for 
initiation and cessation merge into a single criterion, which means that coarse 
sediments undergo simultaneous erosion and deposition while being transported under 
a constant bed shear stress. In the case of cohesive sediment, on the other hand, two 
distinct critical conditions were identified in the literature; one for erosion and a 
different one for deposition (see, e.g. Partheniades & Kennedy, 1966; Partheniades et 
al., 1968; Mehta & Partheniades, 1975; Lau & Krishnappan, 1994). Therefore, for fine 
sediments, the simultaneous erosion and deposition is not possible and these sediments 
undergo either deposition or erosion when subjected to a certain bed shear stress.

A true representation of the erosion and deposition of fine sediment is important 
for contaminant transport models. If the simultaneous erosion and deposition is 
assumed, then the model will predict an enhanced dispersion of the contaminants, 
whereas a mutually exclusive erosion and deposition will result in the preservation of 
comparatively high concentrations of sediment bound contaminants over long distances 
from the source. In this paper, a new sediment transport algorithm is proposed, which 
allows the treatment of erosion and deposition processes as mutually exclusive ones. 
The new algorithm is based on erosion and deposition experiments that were carried 
out in a rotating, circular flume at the National Water Research Institute at Burlington, 
Ontario, Canada using sediments from the Athabasca River near Hinton, Alberta.
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BASIS OF NEW ALGORITHM

Details of deposition and erosion experiments carried out in the rotating, circular 
flume for the Athabasca River sediment were described in Krishnappan & Stephens 
(1996). The deposition results of Krishnappan & Stephens (1996) are reproduced in 
Fig. 1. Figure 1(a) shows the variation of concentration of sediment in suspension as a 
function of time during deposition under different bed shear stresses. This figure 
shows that the sediment concentration drops gradually and reaches a steady-state value 
for all runs. The figure also shows that the steady-state concentration is a function of 
the bed shear stress. When the bed shear stress is higher, the sediment concentration of 
the suspension is also higher. For the lowest shear stress tested, the steady-state 
concentration was only one tenth of the initial concentration and a slightly lower shear 
stress would have produced a nil concentration in suspension. The shear stress at 
which the concentration in suspension becomes zero is termed the critical shear stress

Fig. 1 Variation of concentration for (a) different shear stresses, and (b) different 
initial conditions.
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for deposition. From the flume experiments of Krishnappan & Stephens (1996), the 
critical shear stress for deposition of Athabasca River sediment was estimated to be 
0.10 Nm'2.

Figure 1(b) shows the depositional characteristics of the sediment under constant 
bed shear stress but with different initial concentrations. It can be seen from this figure 
that the steady-state concentration which results during deposition is a function of the 
initial concentration. Such a behaviour is peculiar to fine-grained cohesive sediments 
and conforms to earlier studies on cohesive sediment transport (see Partheniades & 
Kennedy, 1966; Mehta & Partheniades, 1975; Lick, 1982). For a given sediment, the 
ratio between the steady-state concentration and initial concentration was found to vary 
only as a function of the bed shear stress. In other words, in the deposition process of 
fine sediment, the amount of sediment that would deposit under a particular bed shear 
stress is a function of the amount of sediment introduced to the system initially, and 
the fraction of the sediment that would deposit is constant as long as the bed shear- 
stress is held constant. Such a conclusion allows one to establish a relationship 
between the fraction of the sediment that would deposit and the bed shear stress. The 
relationship established for the Athabasca River sediment is shown in Fig. 2.

In Fig. 2, the bed shear stress is expressed in terms of the critical shear stress for 
deposition (i.e. the shear stress below which all the initially suspended sediment would 
eventually deposit). From this figure, it can be seen that when the bed shear stress is at 
or below the critical shear stress for deposition, the fraction that would deposit takes a 
value of unity and the fraction deposited decreases as the bed shear stress increases. 
When the bed shear stress is about six times the critical shear stress for deposition, the 
fraction deposited becomes zero and all the initially suspended sediment stays in 
suspension. A power law relationship between the fraction deposited and the ratio of 
bed shear stress to the critical shear stress for deposition was fitted and is shown as 
solid line in Fig. 2. The relationship takes the following analytical form:

Fig. 2 Transport functions for the Athabasca River sediment.
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fd = 1.0 - 0.32(to/tC(/ -1)0'70 for 1 < t0/tc¿ < 6
/d=1.0 forr0/Tc<i<l (1)

fa = 0 for r0/Tc</ > 6

where fd is the fraction deposited, To is bed shear stress and xCd is the critical shear 
stress for deposition.

The results of the erosion experiment that was carried out by Krishnappan & 
Stephens (1996) are shown in Fig. 3. In this figure, the concentration of eroded 
sediment and the applied shear stress are shown as functions of time. For the erosion 
test, the sediment was allowed to deposit and consolidate for a known period of time 
and then the shear stress was applied in steps as shown in Fig. 3. The sediment deposit 
was fully stable until the bed shear stress of 0.21 N m"2 was established. At this bed 
shear stress, the sediment concentration began to increase and attained a steady-state 
value of about 5 mg F1. Therefore, the critical shear stress for erosion is slightly lower 
than this shear stress. A value of 0.20 N m"2 was selected as the critical shear stress for 
erosion for the sediment that deposited at the critical shear stress for deposition. Note 
that the critical shear stress for erosion is two times the critical shear stress for 
deposition, confirming the earlier result that the fine sediments of the Athabasca River 
behave in a manner similar to that of the cohesive sediment.

From Fig. 3, it can be seen that, at each shear stress step, the variation of sediment 
concentration with time was similar where a steep increase was observed as the shear 
stress was applied followed by a gradual increase towards a steady-state concentration. 
The magnitude of the steady-state concentration at a particular shear stress step was 
lower than the steady-state concentration during the deposition experiment with the 
same bed shear stress. For the maximum shear stress (0.520 N m’2) tested, not all the 
deposited sediment was resuspended. The maximum concentration reached was only 
about 60% of the total concentration that would have resulted from complete 
resuspension. For complete resuspension, a shear stress 12 times larger than the

Fig. 3 Erosion characteristics of the Athabasca River sediment.
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critical shear stress for deposition would have been required. From the erosion 
experiments, the fraction of resuspension was determined for various bed shear 
stresses and plotted in Fig. 2 as circles. A power law relationship was fitted through 
the experimental points. The form of the power law is shown below:

fe = O.32(to/tc(/ - 2)0'5 for 2 < t0/tC(/ < 12
¿=0 for T0/Tcrf < 2 (2)

fe = 1 for T0/Tcd > 2

wnere je is the fraction of sediment re-suspended. For a sediment fraction that is 
deposited at a shear stress different from the critical shear stress for deposition, the 
above function can still be used with the following modifications: (a) the critical shear 
stress term has to be replaced by the shear stress at which the deposition occurred, and 
(b) the upper limit of the shear stress has to be maintained at the original value of 12 
times the critical shear stress for deposition. Using the two functions given by 
equations (1) and (2), a new model is proposed for the transport of fine sediments of 
the Athabasca River. The details of the model are outlined in the next section.

DETAILS OF THE NEW MODEL

Basic information

The river reach is divided into a number of river segments shown schematically in 
Fig. 4. The flow rate in each segment is considered to be steady. Let the flow rate of 
the control segment be Q (m3 s’1). For a varying flow, a quasi-steady state is assumed 
and the flow hydrograph is approximated by a step function. The average bed shear 
stress (to) has to be determined for each segment as a function of the flow rate. This 
can be done by employing friction factor relationships developed for uniform flows. 
The choice of the relationship would depend on the available flow and river geometry 
data. The relationship proposed for the Athabasca River is outlined in the Appendix.

Fig. 4 Schematic representation of sediment mass balance.
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For each segment, the range of the flow rates over an average year is established 
and the corresponding boundary shear stress range is calculated. This shear stress 
range is then divided into a fixed number of flow stages. Each flow stage is identified 
with its own average boundary shear stress which is the mean value of the shear 
stresses bounding the range. To be consistent with the sediment transport functions 
given by equations (1) and (2), the boundary shear stress is normalized using the 
critical shear stress for deposition.

Mass balance of sediment in a control segment

Sediment inflow The mass balance of the sediment in a control segment is 
calculated as follows: the sediment entering the control segment can be (a) from the 
upstream segment and (b) from tributary inflows. The amount of sediment (qsu) 
entering the control segment during a time interval of At can be expressed as follows:

qsu=QCi_i\t + QlCAt (3)

where Cz.¡ is the sediment concentration in the upstream segment, Ct is the 
concentration of sediment in the tributary inflow to the control segment, and Qt is the 
tributary inflow rate.

Sediment depositing to the bed A portion of the incoming sediment will deposit 
depending on the prevailing flow conditions. The sediment quantity transported from 
the upstream segment will be deposited only when the shear stress in the control 
segment is lower than that in the upstream segment. If the shear stress in the control 
segment is equal to or greater than the upstream segment, then the sediment arriving 
from the upstream segment would have gone through the deposition process already 
and would have reached the steady-state concentration. Therefore, this sediment has to 
be routed straight through the control segment. The amount that would deposit in the 
control segment, therefore, can be calculated as:

Qsd = (QQ-^fd + (QtCiAt)fd if (4)
<l,d = (QtC'kt)fd if > */-l

where qs¿ is the amount deposited during the current time step.
The amount remaining in suspension (qss) becomes:

<L, = (QCi-^t + QtCtAz)(l - fd) if t7 < (5)

Qss = Q,ct Ar0 - fd ) + (ßC/-iAi) if x7 > Vi

Sediment resuspension Sediment can also be resuspended from deposits that 
occurred in previous time steps. The mass of resuspended sediment can be calculated 
by keeping track of the amount of deposited sediment and the shear stresses at which 
deposition takes place. This can be done by schematizing the river bed to consist of 
different compartments and assuming that each compartment holds sediment deposited 
at a particular shear stress. For example, let us assume that there are N compartments 
in the control segment and each compartment is identified with an index, say, J.
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Therefore, J varies from 1 to N. Compartment 1 is assumed to collect sediment 
deposited at shear stress equal to or less than the critical shear stress for deposition, tc¿, 
and compartment 2 collects sediment deposited at shear stresses between and 2tc¿ 
and so on. Let the sediment deposited in each of the compartments from the previous 
time steps be Pj. For a given shear stress, the sediment resuspended from various 
compartments can be calculated by applying equation (2) for each compartment with 
the appropriate TCd value as follows:

(6)

J=1 J=1

where qsr is the total amount of resuspended sediment and fej is the erosion function for 
the compartment J.

Knowing the amount of sediment resuspended from and deposited to the bed, the 
concentration of the suspended sediment and the amount of sediment in the various 
compartments in the bed of the control segment at the end of the current time step can 
be calculated as follows:

Sediment concentration at the end of the current time step The suspended 
sediment concentration in the control segment at the end of the current time step is:

C(z) =
(ÖA0

(7)

Amount of sediment in various bed compartments at the end of the current 
time step The amount of sediment left behind in the control segment at the end of the 
current time step is:

¿p; =¿pJ(i-/eJ)+ó(j^)-?sd (8)
J=\ J=\

where Pj is the updated value of Pj at the end of the current time step. The function 
5(J, K) takes a value of unity, when J =K, and zero when J^K. The term K denotes 
the compartment which receives the deposited sediment during the current time step.

The concentration C(z), as calculated by equation (7), is routed to the downstream 
segment and the calculations outlined above for the control segment are repeated for 
the downstream segment. The process is continued until all the segments are 
encountered. The calculations are then repeated for the next time step until the 
simulation period is covered.

APPLICATION OF THE ALGORITHM

The above algorithm was incorporated into the WASP5 model and applied to the 
Athabasca River to predict contaminant transport and fate in the river system as part of 
the Northern River Basin Study. The results are described in a report by Golder 
Associates Ltd (1996). The report concluded that the incorporation of the sediment 
transport algorithm improved the prediction of the WASP5 model.
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SUMMARY

A new algorithm for the transport of fine sediments of the Athabasca River is 
developed based on laboratory experiments in a rotating circular flume. The algorithm 
is formulated for steady flows and may be used for gradually varied flow by 
considering the flow rate as quasi-steady. This algorithm is an improvement over the 
existing sediment transport models as it accounts for the differences in the critical 
conditions for erosion and deposition processes of fine sediment transport. 
Incorporation of the algorithm in a contaminant transport model (WASP5) has 
improved the performance of the model.
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APPENDIX

Calculation of bed shear stress

Assuming that the hydraulic parameters such as the flow rate Q (m3s-1), the flow 
cross-sectional area A (m2), the wetted perimeter, P (m) and the representative bed 
material size (m) are known, we can calculate the bed shear stress using the 
logarithmic friction factor relation as follows:

[/. =---------r---- , (Al)
2.50^[11.0(^/P)/(2.50£>65)]

where Í7*  is the shear velocity in m s’1.
Knowing CT*,  the bed shear stress To in N m"2 can be calculated using the following 

conversion:

r0 =1000U* 2 (A2)

The equation (Al) assumes that the flow is in rough turbulent regime which may 
be a reasonable assumption for the Athabasca River. When the flow is ice-covered, a 
50% reduction in CT*  values can be assumed as a first approximation. Further 
refinement can be carried out if it is warranted.


