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Abstract Numerous studies have shown how selected physico-chemical 
properties of sediments may be used as tracers to identify catchment sediment 
sources. Sediment fingerprinting has value in elucidating the linkages between 
erosion and downstream sediment delivery and potentially offers the opportunity 
to validate deterministic erosion models. However, quantitative fingerprinting 
is subject to considerable uncertainty throughout the research process, i.e. the 
inherent variability of source group properties, the number and distinctiveness 
of source groups, the relative discriminating power of different tracers, 
numerical issues associated with the un-mixing models, and further complica-
tions associated with nonlinear additivity, tracer transformation and enrichment. 
A Bayesian statistical framework was employed to assess two of the sampling 
issues using laboratory-based and synthetic data sets. The analysis shows source 
group contributions can be robustly derived, but source group variability and 
number of samples collected are key issues influencing performance. 
Key words suspended sediment; sediment source; fingerprinting; uncertainty estimation; 
Bayesian framework 

 
 
INTRODUCTION 
 
The use of the physico-chemical properties of suspended sediments to trace linkages 
between soil erosion and the sediment delivered to a catchment outlet is now well 
established (e.g. Oldfield et al., 1979). A useful tracer (sediment property) should be 
able to differentiate unequivocally between potential source groups and should exhibit 
conservative behaviour during transport (Walling et al., 1993). Sediment fingerprinting 
studies have gained in popularity as they offer scope both to identify spatial patterns of 
sediment supply (Passmore & Macklin, 1994), and to distinguish between types of 
supply processes i.e. whether sediments have originated from sheet, rill or gully 
erosion (Wallbrink & Murray, 1993). 
 Individual properties such as colour, 137Cs and particle-size distribution have 
offered valuable insight into sediment supply dynamics, principally at the small 
catchment scale. However, quantitative resolution of multiple sources can only be 
achieved using composite signatures (cf. fingerprints) involving several tracers deemed 
statistically significant (Yu & Oldfield, 1989; Collins et al., 1997). 
 The quantification of sediment sources using a fingerprinting approach involves 
three stages. First, is to identify all key sediment sources relevant to the research 
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questions being asked. Second, is the identification of statistically significant tracers 
capable of unequivocally distinguishing between source groups. Third, is the 
implementation of a multivariate un-mixing model to apportion the “target sediment” 
(whether loess, flood plain or lake deposits) back to its source components. A broad 
range of sediment properties i.e. chemical, mineral magnetic and radiometric have 
been used (cf. Foster & Lees, 2000). However, quantitative fingerprinting is still 
subject to considerable uncertainty throughout the research process (see Table 1). 
 
 
METHODOLOGICAL ISSUES AND SOURCES OF UNCERTAINTY 
 
Sampling from source groups is typically limited in terms of sample numbers and the 
range of tracer properties measured, due to resource constraints and availability of 
analytical facilities. However, source groups are often heterogeneous in nature. Thus 
failure to characterize the true variability of the source groups and the sinks by 
inadequate sampling may introduce significant uncertainty into the multivariate un-
mixing models (Franks & Rowan, 2000). In many cases such uncertainty is not 
propagated into the model output because the current generation of un-mixing models 
use mean properties only. It is therefore apparent that selected fingerprints representing 
individual sources should have low variability from the mean to minimize errors in 
model outcomes, and careful consideration should be given to the design of an 
appropriate sampling strategy, in order to adequately capture source group variability. 
McBratney & Webster (1983) suggest there is the need to account for the spatial 
dependence of soil properties using geostatistical techniques and variograms to 
optimize sample numbers. 
 Uncertainty is still deeply embedded within procedures of source group 
identification. In many studies the potential source groups are characterized on the 
basis of underlying geology, soil type and land use. However such groups may fail to 
include the entire spectra of possible sediment sources in the study catchment (i.e. farm 
tracks and footpaths) or seasonal/event related sources, which may contribute 
considerably to the supply of suspended sediment. Hence, background knowledge of 
the study catchment is essential to ensure that the study includes all the spatially 
distributed source types in the analysis. However, inclusion of too many source groups 
can equally cause problems, whereby groups of source samples are numerical 
multiples of one another (Lees, 1997; Dearing, 2000). 
 Additionally, there is significant uncertainty associated with the selection of 
appropriate tracer properties. Many tracers suffer apparent enrichment or depletion 
effects due to differences in particle-size distributions between the sources and the 
sinks (Novotny, 1980). These effects often render the use of specific tracers too 
uncertain. Typically, subjective corrections are made i.e. for % clay and surface area 
(Collins et al., 1998) to account for these effects. Another potential area of uncertainty 
is tracer transformation which, although widely perceived, has received little attention. 
Processes associated with this are mechanical and chemical alteration along with 
organic matter decomposition resulting in suspended sediments no longer reflecting 
original source material. Such effects must be recognized and accounted for in any 
robust modelling scheme (Walling et al., 1993). 



 

 

 
 
 
Table 1 Principle sources of uncertainty within sediment fingerprinting schemes. 

Nature of uncertainty Key issues (and assumptions involved) Solutions 
Problem formulation i.e. how 
many source groups can be 
distinguished 

Too few source groups compromises utility of approach, too 
many leads to problems of source group discrimination and 
spurious numerical solutions 

Good experimental design; field experience 

Discriminating power of tracers 
to distinguish between source 
groups (dimensionality) 

Depends partially on number, location and types of source 
groups to be distinguished, and laboratory resources available to 
the research team 

Optimize analysis through a priori appreciation of the 
problem; obtain broadest array of property measurements 
possible 

Tracer bias Order of magnitude variations in tracers Normalization procedures in un-mixing models 
Characterization of source 
group variability 

Discriminating between source groups depends on “within 
group” variance relative to “between group” variance  

Requires sound characterization of “source groups” and 
appropriate sample numbers to adequately capture variability 

Measurement uncertainty of 
tracer properties 

Radiometric measurements i.e. 137Cs associated with intrinsic 
uncertainties ±5%, clay mineralogy typically only semi-
quantitative  

Good laboratory practice and quality controls 

Tracer transformation During transport and particularly sediment deposition diagenetic 
transformations may occur i.e. synthesis of biogenic greigite in 
lake sediments (Dearing, 2000) 

Ensure only conservative tracers (Walling et al., 1993) are 
employed in analysis 

Linear additivity Some properties, such as mineral magnetic measurements 
present nonlinear additivity problems (Lees, 1997) 

Combine range of sediment properties i.e. radiometric, 
geochemical and magnetic (multi-parameter approach) 

Enrichment Preferential enrichment/selective deposition of fine/coarse 
fractions of the mineral sediment fraction and organic matter  

Repeat measurements across selected fractions (Yu & 
Oldfield, 1993). Examine only specific fraction i.e. “heavy 
silts” following extensive sample preparation (Kelly & Nater, 
2000) and particle size corrections (Collins et al., 1998) 

Mixing models Constrained linear programming (optimization based)—
problems of equifinality in prediction of estimated source 
contributions 

Further development of “likelihood based” modelling 
approaches (Rowan et al., 2000) 
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 Most un-mixing models (e.g. Walling et al., 1993) have been based on some form 
of linear programme and rely on an optimized solution based on the use of mean end-
member tracer values. Within these models no acknowledgement is made of sampling 
constraints and so this issue is the focus of the present paper. Here a Bayesian Monte-
Carlo based methodology has been developed to explore sampling uncertainties 
permitting the objective derivation of confidence intervals on un-mixing model results. 
Preliminary results use laboratory-mixed and synthetic data sets to provide a rigorous 
examination of the scheme and assess the importance of sampling densities. 
 
 
PROBLEM FORMULATION 
 
The un-mixing model used to quantify relative source group contributions may be 
generalized as follows: 

∑
=

ε+=⋅
m

i
ijjji XAx

1
,

ˆ  j = 1, m (1) 

and additionally constrained by; 

∑
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n

j
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1
1  0 < Aj < 1 (2) 

where jix ,
ˆ  = estimated population mean, i = trace property, j = source group, n = 

number of source areas, m = number of tracers, and Aj = proportional contribution of 
source group, j. εi = error associated with the prediction of the sink trace characteristic, 
Xi. Equation (2) provides an additional constraint on the unknown source groups in that 
they must sum to unity. Consequently, if the requirement is to quantify contributions 
from three source groups, then there are only two unknown variables as the third is the 
residual term. Given the problem as expressed in equation (1), if m > n – 1 (i.e. more 
tracer properties measured than unknown source groups), then the equation is over-
determined. Such over-determined problems also potentially suffer from predictive 
equifinality if multiple acceptable solutions can be found (see Rowan et al., 2000). 
 
 
ESTIMATION OF SAMPLING UNCERTAINTIES 
 
To characterize the properties of a source group it is assumed that the mean and 
associated uncertainty may be represented by Students’ t-distribution. Hence: 

),(ˆ 2
, σµ≈ νtx ji  (3) 

where i = specific source group, j = trace property, µ = true value of the population 
mean (mean of xij) and σ2 = variance of the probability distribution of the population 
mean. The variance of the distribution is given by: 

2
2ˆ 






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d
S  (4) 
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where S = sample standard deviation, and d = number of independent samples. The 
derived probability distribution of the true population mean is therefore dependent 
upon the number of samples collected and used to represent the population mean. 
Using the above equations, the probability distribution of the population means of 
each of the trace characteristics, from each of the source areas, can be calculated. 
 
 
PROPAGATING THE EFFECTS OF UNCERTAIN SAMPLE MEANS 
 
For a given composite sediment signature, the variability associated with each 
component tracer must be propagated into the final model output. To achieve this, 
Monte-Carlo sampling of the derived probability distributions was performed and fed 
into an optimization scheme using the shuffled complex evolution (SCE) algorithm 
(Duan et al., 1992). The model is run iteratively until a sufficient number of 
realizations has been completed. The scheme is inclusive of source group variability 
and analytical error. Analytical errors of target sediment (suspended sediment, flood 
plain deposits etc.) are also included. The scheme is executed as follows: 
(a) Prior to analysis, all values of tracer properties are normalized by the target 

sediment values. 
(b) For each tracer, from each source group, an estimate of the mean value is selected 

from each of the derived probability distributions i.e. 

),(ˆ 2
, ijijji tx σµ← ν  (5) 

(c) Equation (1) is then solved through an optimal least-squares routine (SCE). This 
produces the optimal estimate of the source groups (Aj, j = 1, n) given the 
randomly sampled estimates of the true population means. 

(d) Repeat steps 1–3 until sufficient realizations have been achieved. 
(e) The distributions of calculated source groups for each of the sources represents the 

associated uncertainty. From these, confidence quartiles may be selected (e.g. 
95%). 

 
 
APPLICATION TO LABORATORY MIXTURES 
 
As a validation exercise, the modelling approach was applied to experimental data 
generated in the laboratory. Five different rock types (sandstone, basalt, limestone, 
granite and slate) were milled to produce homogenized rock powders. XRF analysis 
(Phillips PW1400) was used to determine the major oxide composition (i.e. Si, Al, Ca, 
K, Na) in both the end-member samples and a series of mixtures of known 
composition. The mixtures were thus used to test the performance of the un-mixing 
scheme. The uncertainty routine was then performed for each of the five admixtures 
and uncertainty bounds were calculated, as shown in Fig. 1. 
 The model yields 95% quartiles reflecting the uncertainty associated with the 
inferred source contributions. The median values always lay on or near the equiline 
(R2 = 0.982) indicating a “good fit” between modelled and expected values. However, 
broad error bands are also evident (i.e. 30–35%). These large error envelopes were 
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related to the relatively small number of samples (n = 3) used to characterize the 
source groups. This effect illustrates the importance of sample numbers as will now be 
discussed. 
 

y = 0.9846x + 0.3107
R2 = 0.9827
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Fig. 1 Comparing modelled contributory coefficients to laboratory mixtures. 

 
 
SYNTHETIC TEST DATA: CONFIDENCE INTERVALS AS A FUNCTION 
OF SAMPLE SIZE 
 
To more explicitly investigate the role of value ranges and sample size with regards to 
uncertainty estimation, synthetic test data were created (Table 2). Four source groups 
(SG) were specified with known contributions to the sink (A1 = 20%; A2 = 30%; A3 = 
5%; A4 = 45%). Specifying “true” mean values of seven component tracers, different 
combinations of sample number, and variability as expressed by the coefficient of 
variation, were explored to elucidate the resultant uncertainty in the modelled 
contributory coefficients. 
 The un-mixing model was run for contrived data sets comprising 3, 5, 10, 20, and 
100 samples from each source group, with CV%s of 10, 20, 30, 40 and 50% 
respectively. In each case, 1000 realizations were achieved. The mean of the 95% CI 
ranges of the contributory coefficients are shown in Fig. 2. The results illustrate that 
the uncertainty associated with the derived contributions is large when sampling 
density is low, even with very low source group variability (e.g. n = 3, CV% = 10%). 
As more samples are used, the uncertainty associated with the group contribution is 
markedly reduced. 

Table 2 Synthetic data set showing “true” population means.

Tracer no. SG1 
20% 

SG2 
30% 

SG3 
5% 

SG4 
45% 

1. 50 20 110 60 
2. 70 55 22 79 
3. 2 6 3 8 
4. 23 78 54 116 
5. 5 7 9 2 
6. 1 0.5 2.2 6 
7. 90 10 17 57 
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 Sampling densities required for constrained uncertainty is also very much 
dependent on the variability (CV%) of the source groups. An increase in CV%, clearly 
also controls precision e.g. with n = 20 and CV% = 10% uncertainty was 5%, as CV% 
increases to 30%; uncertainty likewise increases to 13%. Thus, confidence in any 
particular fingerprinting application depends on both the natural variability of the 
source group tracer values and the number of samples used to characterize their 
probability distributions. 
 
 
DISCUSSION AND CONCLUSIONS 
 
A conceptually simple but robust methodology has been developed for the assessment 
of uncertainty in sediment fingerprinting models. By accounting for source group and 
analytical uncertainties, confidence limits have been calculated for inferred source 
group contributions. The scheme was validated using laboratory analysis and extended 
using synthetic admixtures. The accuracy and precision of the un-mixing clearly 
depends on the number of samples obtained combined with the inherent variability of 
tracer values within source groups.  
 Much of the existing literature reports relatively limited field campaigns and under 
reports the variability involved. The results presented indicate some directions forward 
in this regard. If tight confidence limits are required, then high-density sampling is 
likely to be needed. The number of samples needed is itself a function of the natural 
variability of each group. 
 The discussion thus far has not explored the issue of tracer numbers. Bayesian 
sampling implies that maximizing the number of tracers included in the analysis may 
also reduce uncertainty. However, it is not simply a case of including all potential 
tracers, as many are non-conservative and/or may be subject to enrichment/depletion 
processes. Current methods of tracer selection do not adequately account for sampling 
variability or for enrichment/depletion effects in a rigorous manner. Within the 
Bayesian approach, it is preferable that the worth of each individual trace property is 
assessed according to its influence on the inferred group contributions (rather than its 
ability to discriminate between groups alone). A Bayesian approach enables corrupted 
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Fig. 2 Effect of source group sampling numbers and source group variability on model 
performance. 
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tracer properties to be identified, and explicitly calculates and minimizes uncertainty 
(Franks & Rowan, 2000). The effects of enrichment (grain size) and organic matter 
remain key issues and will be reported in a future study. 
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