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Abstract An explicit finite difference scheme for erosion and sediment 
transport on upland areas of a watershed is derived. The derivation is based on 
the unsteady state one-dimensional sediment continuity and momentum 
equations, simplified with the kinematic wave approximation. The derivation 
ends up with a linear partial differential equation. Upland erosion is thought of 
as sheet erosion incorporating the effects of rainfall and runoff by way of non-
physical calibration parameters. Calibration of these parameters is of great im-
portance for ungauged basins where data do not exist. A finite difference 
scheme is chosen to solve the resulting equation, together with appropriate 
boundary and initial conditions. A hypothetical data set was used to evaluate 
the applicability of the model developed in the study. The performance of the 
model at the hillslope scale indicates that it has potential for application at the 
watershed-scale. 
Key words  erosion; hillslope; mathematical model; rainfall erosion; runoff erosion;  
ungauged basin 

 
 
NOTATION 
 
C Chezy roughness coefficient [L1/2 T-1] 
Cs Volumetric sediment concentration [L3 L-3] 
E Erosion [ML-2 T-1] 
Er Rainfall erosion [ML-2 T-1] 
Ef Runoff erosion [ML-2 T-1] 
h Flow depth [L] 
q Unit width discharge [L2 T-1] 
qs Unit sediment discharge [ML-1 T-1] 
R Rainfall intensity [LT-1] 
S Topographical slope [–] 
t Time [T] 
Tc Transport capacity of flow [ML-1 T-1] 
v Velocity [LT-1] 
x Downslope distance [L] 
α Coefficient (= SC ) [L1/2 T-1] 
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β Exponent  
χ Dimensional rainfall erosion coefficient  
δ Rainfall erosion exponent  
ε Exponent  
γ Specific weight of water [ML-2 T-2] 
η Dimensional coefficient  
ρs Specific mass of sediment [ML-3] 
σ Transfer rate coefficient [L-1] 
τ Flow shear stress [ML-1 T-2] 
τc Critical shear stress [ML-1 T-2] 
∆t Time increment [T] 
∆x Space increment [L] 
 
 
INTRODUCTION 
 
Erosion is a process of detachment and transportation of soil materials by different 
agents such as wind, rainfall and runoff (Foster & Meyer, 1972). It is also defined as 
the loosening, or dissolving, and removal of earth or rock materials from any part of 
the Earth’s surface (ASCE Task Committee, 1970). Erosion on planar hillslopes with 
no rill development is rainfall-dominated, whereas erosion in channels is mostly 
controlled by runoff. Rainfall detaches sediment particles from their original locations 
on the Earth’s surface due to raindrop impact. Sediment concentration is the highest at 
the beginning of rainfall, and decreases until a steady state is reached. As mean water 
depth increases, sediment concentration decreases. The decrease in soil loss at greater 
flow depths can be attributed to the increasing protection of the soil surface from 
raindrop impact as the flow depth on the surface increases (Singh & Prasad, 1982).  
 The upland area of a watershed is that part of the landscape where runoff is 
considered as overland flow in hydrological analysis. Although an upland area has a 
micro-topographical structure with rills and interrill areas, the derivation performed in 
this study does not take this structure into account and considers erosion on upland 
areas as sheet erosion comprised of rill and interrill erosion. Flow usually has no effect 
on the detachment of soil in upland areas since shear stress is low because of the very 
low flow depth. Rainfall is assumed to be the unique agent to detach the soil. Raindrop 
impact and flow combine to transport the detached soil particles to channels in the 
lower parts of the watershed.  
 In the following sections, a hydrological analysis of flow over a hillslope is first 
performed, then a sediment transport equation is derived at the hillslope scale. The 
erosion term is described in detail in the following section. A finite difference scheme-
based numerical solution of the formulation is then given, together with an application 
to a hypothetical data set.  
 
 
HYDROLOGICAL FORMULATION 
 
The equation governing one-dimensional unsteady flow on an impervious slope is 
given by: 



Physically-based mathematical formulation for hillslope-scale prediction of erosion 
 
 

 

103

R
x
q

t
h =

∂
∂+

∂
∂  (1) 

where h is depth of water over the slope [L], t is time [T], q is unit width discharge of 
flow [L2 T-1], x is downslope distance [L], and R is rainfall intensity [LT-1] (Foster, 
1982). The unit width discharge is given by:  

vhq =   (2) 

where v is average velocity of flow [LT-1]. A slope over which water flows can be 
considered to be a wide channel. Using the Chezy equation for surface roughness: 

hv α=   (3) 

with 2/1CS=α  where C is Chezy roughness coefficient [L1/2 T-1] and S is topo-
graphical slope [–], leads to: 

( ) R
x
h

t
h =

∂
α∂+

∂
∂ 2/3

 (4) 

If we write the exponent as β (= 3/2), equation (4) can also be written as: 
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However, taking β = 1 can also be considered, resulting in:  
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This first order linear partial differential equation was proposed by Giakoumakis & 
Tsakiris (2001) who compared its performance in simulating the flow over infiltrating 
surfaces to the results of laboratory experiments.  
 
 
SEDIMENT TRANSPORT 
 
With regard to sediment yield, a watershed can be divided into two main parts: upland 
and lowland (Bennett, 1974). In the upland area of the watershed, runoff is considered 
to be overland flow in hydrological analysis. Erosion due to overland flow takes place 
in the upland part of the watershed. The upland area collects the runoff and transports 
it to channels. Although there is a tremendous variability (rills and interrill areas), the 
upland area is considered a smooth plane in most previous studies, including 
KINEROS (Woolhiser et al., 1990) and SHESED (Wicks, 1988). Recently, interaction 
of rills and interrill areas was considered in hydrological studies (Tayfur & Kavvas, 
1994) and erosion and sediment transport studies (Govindaraju & Kavvas, 1992; 
Morgan et al., 1998; Aksoy & Kavvas, 2001). In this study, no distinction is made 
between rill and interrill areas. Therefore, the upland area is considered to be a smooth 
plane.  
 The one-dimensional continuity equation for sediment can be derived as: 
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where Cs is volumetric sediment concentration [L3L-3], ρs is specific mass of sediment 
[ML-3], and E is erosion rate [ML2T-1], which is the sum of erosion by rainfall and 
overland flow as explained in detail in the following section. 

( ) ( )
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∂

∂
α+

∂
∂

 (8) 

is obtained following the assumptions and simplifications made in the hydrological 
analysis. It should be noted that h, Cs and E in equations (6) and (8) are functions of 
both space and time.  
 
 
EROSION 
 
Erosion occurs in the upland and lowland parts (channels) of the watershed. In this 
study, only upland erosion and sediment transport were formulated. Erosion taking 
place in the channel itself is out of the scope of this study.  
 Upland erosion starts with the detachment of sediment particles. Once a sediment 
particle is set in motion, it is much easier for the flow to transport it in the direction of 
flow because a lower shear stress is required. Many factors influence the erosional 
processes so that many parameters need to be used in calculating erosion. An 
important task in erosion and sediment transport studies is the calibration and 
validation of those parameters. In this study, the erosion term (E) in equation (8) is 
equal to the sum of erosion by rainfall (Er) and overland flow (Ef). 
 
 
Erosion by rainfall 
 
Erosion by rainfall is usually related to the rainfall intensity (R) as: 

δχ= REr   (9) 

where χ and δ are parameters to be determined in the calibration stage of the model or 
to be set at some values known from the literature. χ is the soil detachability coeff-
icient. It has a dimension that depends on the value of δ, which usually equals 1 or 2. It 
should be noted that rainfall intensity is constant throughout the storm and uniform 
over the entire upland area. χ can also be considered a function of rainfall intensity as 
in SHESED (Wicks, 1988), where the coefficient was given for four rainfall intensity 
class intervals. In SHESED, not only χ but also δ was considered dependent upon 
rainfall intensity. Higher rainfall intensities result in lower values of χ and δ.  
 
 
Erosion by overland flow 
 
Net shear stress is defined as the difference between the shear stress produced by the 
flow and the critical shear stress, which is the minimum shear stress required for 
sediment particles to be detached. Erosion occurs as long as the net shear stress on the 
soil surface is greater than zero. Eroded sediment is transported as long as the sediment 
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load is smaller than the transport capacity of the flow. Based upon this concept, the 
following basic equation was used for erosion by overland flow:  

( )scf qTE −σ=  (10) 

in which σ is the transfer rate coefficient or a first order reaction coefficient for 
deposition [L-1] (Foster, 1982). In equation (10), Tc is the transport capacity of the flow 
[ML-1T-1] and qs is the unit sediment discharge [ML-1T-1]. Note that Ef is erosion from 
a unit area of hillslope [ML-2T-1].  
 The sediment discharge in equation (10) is defined as: 

qCq sss ρ=  (11) 

where ρs, Cs and q are as previously defined. The transport capacity of the flow is 
usually given by an equation that incorporates net shear stress, as: 

( )ετ−τη= ccT  (12) 

where η is a dimensional coefficient and ε is an exponent. τ and τc are the shear stress 
[ML-1T-2] and its critical value, respectively. The critical shear stress can be thought of 
as the resistance of soil against erosion, so that a higher critical shear stress implies a 
less erodible soil. The shear stress exerted by the flow is given by:  

hSγ=τ   (13) 

where γ is the specific weight of water [ML-2T-2], h is flow depth [L] and S is 
topographical slope [–]. This equation is valid when the cross-section is assumed to be 
a wide rectangle, which is a reasonable approximation for overland flow when the 
hydraulic gradient can be equated to the topographical slope of the upland area 
(kinematic wave approximation). 
 Critical shear stress is a parameter in equation (12) that should be determined. 
However, it can be assumed that there are always fine particles of sediment detached 
by the action of wind and other elements between storm events. These sediment 
particles are transported by overland flow as soon as the rainfall intensity exceeds the 
infiltration capacity of the soil surface, without any resistance to removal (Lopes, 
1987). In this study, the critical shear stress, τc, was therefore set to zero for flow over 
upland areas. 
 There are three parameters in equations (10) and (12), σ, η and ε, that need to be 
calibrated. When the critical shear stress is taken into account, additional parameters, 
depending upon the chosen equation, will arise. The erosion term E in equation (8) 
becomes:  

( )[ ]hChSRE ss αρ−γησ+χ= εδ  (14) 

Initial and boundary values of overland flow depth and sediment concentration were 
set to zero. The sediment concentration then becomes an explicit function of overland 
flow depth at the current and previous time and space steps, and of sediment concen-
tration at the previous time and space steps. 

( ) ( ) ( ) ( ) ( ) ( ){ }txxCttxCtxhtxxhttxhfunctxC sss ;,;,;,;,;; ∆−∆−∆−∆−=  (15) 
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∆x and ∆t in equation (15) are space and time increments, respectively. Overland flow 
depth is already known from the hydrological part of the model, whereas sediment 
concentration of the previous time and space steps is taken from the solution of the 
numerical algorithm. 
 
 
APPLICABILITY OF THE MODEL 
 
A hypothetical data set was chosen to test the model. A limited number of references 
was found to contain values of coefficients and exponents for the rainfall and runoff 
equations (Foster, 1982). Table 1 is a summary of the hypothetical data set used in the 
study. The objective of this study was to see if the proposed algorithm could be used 
for erosion and sediment transport studies. Once the applicability of the formulation is 
confirmed, it can be extended to infiltrating surfaces at the hillslope and watershed 
scales. The inputs required by the model are rainfall data and the calibration parameters 
for the erosion part of the model. The rainfall data can be measured or estimated. The 
calibration parameters can be set to some values known from the literature.  
 
 
Table 1 Hypothetical data set used in the study. 

Rainfall intensity (R) 20 mm h-1  
Chezy coefficient (C)   15 m1/2s 
Slope (S) 0.05 
Rainfall duration 15 min 
Length of slope  10 m 
Rainfall erosion coefficient (χ) 1 
Rainfall erosion exponent (δ) 2 
Transfer rate coefficient (σ) 1.3 m-1 
Specific mass of sediment (ρs) 2700 kg m-3 
Coefficient (η) 0.06 
Exponent (ε) 1 
 
 
 Results of the application are presented in Figs 1 and 2, which show the generated 
hydrograph and sedigraph, respectively. The algorithm was run for 20 min, which is 
5 min longer than the rainfall duration. It is seen that runoff increases and then 
stabilizes during the rainfall and, as expected, decreases suddenly after rainfall ceased. 
A similar sedigraph was obtained with increasing sediment discharge during the storm 
and decreasing sediment discharge after the rainfall had stopped. Figures 1 and 2 show 
the applicability of the formulation.  
 
 
CONCLUSION 
 
Based on the hypothetical results obtained in this study, it can be concluded that the 
proposed model is of potential use for hillslope scale hydrological analysis and erosion 
and sediment transport studies. The model should be tested with experimental field and 
laboratory data so that the parameters required by the model can be calibrated. The  
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Fig. 1 Simulated hydrograph at the bottom of the hillslope. 
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Fig. 2 Simulated sedigraph at the bottom of the hillslope. 
 
 
only requirement other than the calibration parameters is the rainfall. Data from basins 
with similar physical characteristics to those of the ungauged basin to be investigated 
can be used for setting the values of the calibration parameters.  
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