
Sustainable Water Management Solutions for Large Cities  (Proceedings of symposium S2 held during the 
Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, April 2005). IAHS Publ. 293, 2005. 
 
 

 

 

203

A 3-copula function application for design 
hyetograph analysis  

 
 

SALVATORE GRIMALDI1, FRANCESCO SERINALDI2, 
FRANCESCO NAPOLITANO2 & LUCIO UBERTINI1,2  

1 National Research Council, CNR-IRPI, Via Madonna Alta, I-126 06124 Perugia, Italy 
salvatore.grimaldi@irpi.cnr.it 

2 Department of Hydraulics, Transportation and Highways, University of Rome “La Sapienza”, 
Via Eudossiana 18, I-00184 Rome, Italy 
 
Abstract A design hyetograph is a synthetic rainfall temporal pattern 
associated with a return period. Usually it is determined by means of statistical 
analysis of observed rainfall mean intensity through intensity–duration–
frequency (IDF) curves. The other characteristics of a rainfall event, such as 
the peak, total depth and duration, are found indirectly throughout several 
phases of hydrological analysis, and trigger suitable work assumptions. The 
aim of this paper is to apply a multivariate approach in order to analyse jointly 
observed data of rainfall critical depth, maximum intensity and total depth. In 
particular, bivariate analysis of intensity–total depth conditioning to critical 
depth is developed using a 3-copula function to define the trivariate joint 
distribution function. Following the proposed procedure, once a design return 
period and related critical depth are selected, it is possible to determine, in a 
probabilistic way, the intensity and total depth, without advancing a priori 
hypotheses on the design hyetograph pattern. In a case study, the results 
obtained with the proposed procedure are compared with those deduced from 
standard design hyetographs usually applied in practical hydrological 
applications. 
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INTRODUCTION 
 
The event critical depth for a given duration and the design hyetograph are the two 
most important quantities of interest about rainfall for design and management 
purposes. The first is the maximum amount per unit area that can fall in a specified 
time interval with defined probability, and is given by intensity–frequency–duration 
(IDF) curves (Chow et al., 1988). These curves are defined by a univariate statistical 
analysis and show the relation between mean critical intensity and duration, for an 
assigned value of return period. The second, the design hyetograph, is the temporal 
pattern of critical depth. 
 Approaches for defining design hyetographs can be synthesized into the following 
four categories (Chow et al., 1988; Pilgrim & Cordery, 1975; Veneziano & Villani, 
1999; Thompson, 2002):  
1. definition of a simple geometric pattern relative to a single point on IDF curves, 

that is hyetographs whose depth is critical only for the chosen duration,  
2. use of patterns in accordance with whole IDF curve,  
3. use of standardized profiles obtained from rainfall records, and  
4. use of patterns given by stochastic rainfall simulation.  
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In the following, examples of the four categories are described. 
 Type 1 The rectangular hyetograph, whose duration equals the basin concentration 
time and constant intensity equals a value achieved by IDF curves, belongs to this 
type. This hyetograph, very simple and for this reason widely used, systematically 
underestimates both rainfall intensity and depth (Veneziano & Villani, 1999). To 
overcome this limit, hyetographs with different profiles have been proposed. Among 
these, for instance, there is the so called Sifalda (1973) hyetograph, obtained from 
rainstorm records and characterized by a central rectangular part and two tails that take 
into account non critical amounts both previous to and after the critical one. The 
hyetograph suggested by Desbordes (1978) is similar to the above but it has a 
triangular profile in the central part. Finally, there is the simple, triangular-shaped 
hyetograph proposed by Yen & Chow (1980) and Chow et al. (1988). 
 Type 2 The most well-known examples of this category are the “alternating block” 
hyetograph and the so-called Chicago hyetograph introduced by Keifer & Chu (1957). 
In the first, rainfall intensity changes discontinuously whereas in the second it is 
continuous. As shown by Keifer & Chu (1957), the Chicago hyetograph is defined by 
considering critical intensities for every duration. Consequently the return period is 
longer, relative to the total depth, than that of the related IDF. 
 Type 3 This approach yields temporal patterns based on rainfall records. The 
precipitation event is adimensionalized by dividing time by total duration and cumul-
ative depth by the total depth. Temporal patterns obtained through this approach differ 
from the previous methods, and yield complete events and not only the critical part. 
For instance, Huff’s hyetograph (Chow et al., 1988) is one of those derived by standard-
ization. The advantage of these hyetographs is that they are related to rainstorm 
profiles observed in the area taken into account. Their limit is the high variability of 
observed patterns. In order to obtain stable profiles wide samples are needed. 
 Type 4 This approach reproduces the natural rainfall variability, simulating the 
event by stochastic models that allow one to overcome the limits of the previous 
methods. Research into this approach has been performed by Koutsoyiannis & 
Foufoula-Georgiou (1993). Finally, Zarris et al. (1998) proposed a mixed method that 
uses stochastic models in order to disaggregate the rainfall depth, deduced by IDF 
curves for a given duration and return time, at a shorter time scale. Using this 
technique one obtains a series of random independent storm patterns with the same 
duration and depth, that can be used as input to rainfall–runoff models. 
 Usually, hyetographs involve the following quantities: the return period, 

( )( )dtr ZPT =−= 11  where P(Zt=d) is the non exceeding probability of the critical depth 
for the critical duration d, suggested by design hypotheses; the duration, deduced by 
the basin concentration time, defined as “the time of flow from the (hydrologically) 
farthest point of the watershed to the outlet” (Chow et al., 1988; Olivera & Stolpa, 
2003), which is equivalent to the time when all the basin contributes to the runoff at 
the outlet; the total rainfall depth; the maximum rainfall intensity or peak; the peak 
time, that is the peak position in the rainfall pattern. 
 The maximum intensity and the peak position within the event are determined by 
both the analysis of record profiles (e.g. Huff, Pilgrim and Cordery hyetographs) and 
the mathematical properties of the pattern equations (e.g. Chicago hyetograph).   
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 Keeping in mind how the IDF curves are built, it is useful to remember that the 
critical depth is not the total amount of an actual event, but the highest rainfall pulse 
(relative to the selected return period and critical duration) within a higher duration 
event, that usually is not critical for the other durations. As previously stressed, the 
patterns of the Sifalda, Desbordes and Chicago hyetographs try to consider a non 
critical depth of the storm, whose critical pulse is just a part, adding a rainfall 
contribution before and after the critical one. Then, there are two types of depth: a 
critical depth derived from IDF relationship and an event total depth. These quantities 
coincide in rectangular and triangular hyetographs, whereas, more realistically, they 
differ in the Sifalda, Desbordes and Chicago design storms. 
 So, it is possible to distinguish two types of quantities. Those related to the IDF 
relationship (duration, mean intensity and depth) usually so-called critical, and those 
(duration, peak intensity and depth) that characterize the actual storm pattern. As 
shown, the latter are derived from the former through either conceptual or empirical 
methods. However, with this approach, the design storms have the same conventional 
rarity degree of the IDF relationship employed. 
 This paper investigates the possibility of carrying out a multivariate statistical 
analysis of critical depth, maximum intensity and total depth related to the rainfall 
observations, in order to obtain the information necessary to derive the design storm 
directly from observed time series. For this purpose the copula function, a remarkably 
flexible tool for constructing multivariate cumulative distribution functions (cdfs) 
coupling arbitrary marginal (De Michele & Salvadori, 2003; Cherubini et al., 2004; 
Favre et al., 2004), is employed.  
 The proposed methodology is characterized by the use of the trivariate copula to 
define the joint cdf of total depth, maximum intensity and critical depth, the bivariate cdf 
of maximum intensity and total depth conditioned to critical depth, and the correspond-
ing probability density functions (pdfs). The procedure is applied to a case study and the 
results are compared to those obtained applying the Sifalda and Triangular hyetographs. 
 
 
THE 3-COPULA APPROACH 
 
The aim of the paper is to derive event quantities useful for defining design hyeto-
graphs from critical ones probabilistically, instead of using empirical or conceptual 
methods as described in the Introduction. 
 In this work, critical duration and return period are regarded as design parameters 
defined a priori. The critical depth is the information directly achieved through the 
IDF relationship, whereas the mean intensity can be viewed as derived information 
because it is the ratio between the critical depth and critical duration. Overlooking 
duration and peak position, attention is focused on total depth (X, mm), peak intensity 
(Y, mm h-1) and critical depth (Z, mm). Since these three quantities show several aspects 
of the same physical phenomenon they should be mutually correlated. As shown in the 
next section, the values of Kendall’s τ rank correlation coefficient (Nelsen, 1999) 
confirms this hypothesis and shows that the dependence is usually positive and not to 
be overlooked. Thus, the behaviour of the three variables has to be studied jointly by a 
trivariate joint cdf H(x,y,z) which contains all of the statistical information. H(x,y,z) is 
built by means of a copula function, briefly described in “Appendix”. 
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 Once the return period and a critical duration are chosen, the total depth and 
maximum peak that occur with a given joint probability are determined, related to 
critical depth deduced from IDF curve. For this purpose the knowledge of joint cdf 
H(x,y|z) and pdf h(x,y|z) of total depth X and peak intensity Y conditioning to critical 
depth Z are needed. Then, using equation (A1) (see Appendix) their expressions can be 
written as follows: 
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 is the copula density. 

By fixing the z0 value (obtained from IDF curves) and hence w0 = FZ(z0), the values of 
the total depth X and the peak Y, that occur with highest joint frequency relative to the 
chosen critical depth Z = z0, are those that maximize function h(x,y|z0). In addition, the 
pairs total depth–peak with a given joint probability for a fixed critical depth can be defin-
ed. For a more complete description of the procedure (see Grimaldi & Serinaldi, 2005). 
 
 
CASE STUDY 
 
Copula and marginal cdfs assessment 
 
The proposed procedure has been applied to half-hourly rainfall data from 1995 to 
2001 from ten raingauges located in Umbria (Italy). The first step of the record 
analysis is to identify rainfall events in the time series. Following De Michele & 
Salvadori (2003), two events are judged independent if separated by a 7-h dry period 
(Koutsoyiannis & Foufoula-Georgiou, 1993). The heaviest events, in terms of critical 
depth, for each year, are selected giving seven annual maximum events relative to 
critical depth for every site. Generally, the ten events selected for each year belong to 
different periods of the year. So they seem not to be a consequence of the same 
contemporaneous weather phenomenon, and so they can be regarded, as a first 
approximation, as independent. On the other hand, since the sites show similar climate 
features, we can assume that the ten series belong to the same population, so a 70-year 
sample is available. Of course, these assumptions are approximate and imperfect but 
acceptable in order to test the model. So, for each event, peak (30-min maximum 
depth), total depth and critical depth related to the 2-h critical duration are defined. As 
shown by the τ correlation matrix (Table 1) the three quantities are positively 
correlated. This condition is necessary to apply the theory stated above.  
 The K-S test shows that critical depth, total depth and peak intensity have 
respectively Gumbel, log-normal and Gumbel distributions, whose parameters are 
illustrated in Table 2. 
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Table 1 Kendall’s τ correlation matrix of critical depth, peak intensity and total depth. 

Kendall’s τ Critical depth Peak intensity Total depth 
Critical depth 1.000 0.504 0.492 
Peak intensity 0.504 1.000 0.193 
Total depth 0.492 0.193 1.000 

 
Table 2 Parameters of marginal cdfs. 

Marginal cdfs Scale parameters Position parameters 
Gumbel  (critical depth) 0.107 30.275 
Lognormal (total depth) 0.435 3.840 
Gumbel (peak intensity) 0.083 30.506 
 
 
As explained in the Appendix, applying the CML method, the dependence parameters 
α of several 3-copula are assessed. Among these, the best copula is: 
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As previously described, the definitions of the conditioning joint pdf and cdf are 
needed. Applying equation (1) with the expression of copula (3) one obtains: 
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The bivariate pdf h(x,y|z) (whose expression is left out) conditioning to a critical depth 
value with a 5-year return period (P = 0.8, z0 = 44.26 mm) is shown in Fig. 1(a). 
Figure 1(a) also shows a sample of 5000 pairs intensity–total depth conditioning to 
critical depth generated by the conditional copula method (Cherubini et al., 2004; 
Favre et al., 2004). Figure 1(b) shows a contour plot of H(x,y|z). This function allows 
one to define all possible pairs of intensity–total depth conditioning to the value of 
critical depth chosen in this case study for every fixed conditional joint probability. 
 
 
Comparison with standard design hyetograph methods 
 
As described in the Introduction, a fixed critical depth relative to a chosen duration, the 
total volume and peak of the event are deduced by a synthetic hyetograph. The 
methods considered here are the Triangular and the Sifalda hyetographs. In the first 
one the temporal pattern of rainfall is a triangle with the peak equal to 2ic, with ic 
critical intensity, and the duration equal to concentration time d. In the second one the 
pattern is characterized by a central rectangle and two triangles. The rectangle has 
intensity equal to ic

 and duration equal to d, the first triangle has an intensity increasing 
from 0.0675ic to 0.45ic with duration equal to d and the second triangle has duration 2d 
and intensity decreasing from 0.45ic to 0.09ic.  

(4) 
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Fig. 1 (a) Contour plot of pdf h(x,y|z) with critical depth z0 = 44.26 mm (Tr = 5 years). 
Grey points are the 5000 pairs simulated with the model estimated. (b) Contour plot of 
cdf H(x,y|z) with critical depth z0 = 44.26 mm (Tr = 5 years). 
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Fig. 2 Box-plot of: (a) intensity and (b) total depth, relative to the 5000 pairs 
generated considering five different return time values. The triangle and the circle 
represent respectively the pairs of Triangular and Sifalda hyetographs. 

 
 
 In Figs 2 and 3 the results, obtained using the standard approaches, are compared 
with one obtained using the copula method. In fact the availability of the distribution 
function conditioning to the critical depth and of a point generation algorithm allows 
us to create potential samples of volume–peak pairs. Therefore, 5000 pairs were 
simulated conditioned to the critical depth deduced from intensity–duration curves for 
duration equal to 2 h and for 5, 10, 20, 50, and 100-year return periods. The box-plots 
of volumes and peaks obtained are shown in Fig. 2(a) and (b). In the same graphs are 
overlapped the pairs obtained using the Triangular and Sifalda methods. As expected, 
the first method provides peak values higher than the second one and vice versa for the 
volume. However, both pairs of values are located near the boxes and far from the 
extreme values of both quantities. 
 Another way to judge the results is provided by Fig. 3(a,b,c). For three return time 
values (5, 20, 100-year), all points (generated, Sifalda and Triangular) are shown on a 
plot of intensity–volume. The position of the two standard methods is near to the 
centre of mass of the joint density. The value, probably low, of the joint return time of 
the two pairs, obtained from standard methods, is confirmed in Fig. 3(d,e,f). The two 
points are always lower than the 2-year joint return time. 

(a) (b) 

(a) (b) 



A 3-copula function application for design hyetograph analysis 
 
 

 

209

0 50 100 150 200 250
Total depth (mm)

0
50

10
0

15
0

In
te

ns
ity

 (m
m

 h
-1

)

Triangular
Sifalda

(a)

1.01

1.5
2
5

10
20
50
100

0
50

10
0

15
0

In
te

ns
ity

 (m
m

 h
-1

)

0 50 100 150 200 250
Total depth (mm)

Triangular
Sifalda

(d) 

0 50 100 150 200 250
Total depth (mm)

0
50

10
0

15
0

In
te

ns
ity

 (m
m

 h
-1

)

Triangular
Sifalda

(b)

1.01

1.5
2

5
10
20
50
100

0 50 100 150 200 250
Total depth (mm)

0
50

10
0

15
0

In
te

ns
ity

 (m
m

 h
-1

)

Triangular
Sifalda

(e) 

0 50 100 150 200 250
Total depth (mm)

0
50

10
0

15
0

In
te

ns
ity

 (m
m

 h
-1

)

Triangular
Sifalda

(c)

1.01

1.5
2

5
10
20
50
100

0 50 100 150 200 250
Total depth (mm)

0
50

10
0

15
0

In
te

ns
ity

 (m
m

 h
-1

)

Triangular
Sifalda

(f) 
Fig. 3 (a, b, c) The 5000 generated pairs conditioned to three different critical depths: 
(a) 5-year return time, (b) 20-year return time, (c) 100-year return time. The triangle 
and the circle represent respectively the pairs of Triangular and Sifalda hyetograph.  
(d, e, f) Contour plot of joint return time derived from cdf H(x,y|z) with critical depth 
z0 relative to Tr = 5, 20, 100 years. 
 
 

 Therefore the comparison allows us to highlight that, for this case study, the values 
of peak and volume deduced from the critical depth via standard methods are not 
cautious because it could be common to have at the same time a pair with higher 
values of peak and volume. 
 
 
CONCLUSIONS 
 
In this paper a procedure to obtain information about the peak and total depth of design 
hyetographs is described. Using copula theory, the trivariate cdf critical depth–total 
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depth–peak intensity has been determined. Knowing the joint probability it is possible 
to define bivariate pdf and cdf conditioning to critical depth. Choice of the best fitting 
copula has be carried out by comparing several 3-copulas. Comparing actual values 
and synthetic ones highlights the goodness of the estimated trivariate model. The joint 
cdf conditioned to critical depth allows one to generate pairs of intensity and total 
depth that show reasonable values. A comparison of the results obtained with the 
Triangular and the Sifalda synthetic hyetograph is shown. The standard method results 
provide peak–volume pairs with a low (1–2 year) joint return time.   
 
 
APPENDIX: COPULA FUNCTION 
 
A copula is a multivariate cdf defined in the unit cube [0,1]n with standard uniform 
marginals (for more mathematical details see Joe (1997) and Nelsen (1999)). A very 
important result in copula theory, named the Sklar theorem (Nelsen, 1999), assures, 
under some conditions, that it is possible to write a n-dimensional cdf and in particular 
a 3-dimensional cdf H with margins FX, FY and FZ as follows: 

H(x, y, z) = C(FX(x), FY(y), FZ(z)) = C(u, v, w) (A1) 

where FX(x) = u, FY(y) = v and FZ(z) = w. 
 In hydrological applications (De Michele & Salvadori, 2003; Favre et al., 2004), 
copulas belonging to the symmetric Archimedean class are used, since they involve 
suitable properties (Nelsen, 1999). In these copulas, dependence among the variables is 
synthesized through an α parameter (e.g. see equation (3)).  
 Using the copula method, parameters of the marginal cdfs and the α parameter of 
the copula can be separately estimated. In particular, α can be assessed by the 
Canonical Maximum Likelihood (CML) method (Cherubini et al., 2004). Usually, 
several Archimedean families are taken into account. After estimation of parameter α 
for each family, in order to choose which copula fits the data adequately, a test can be 
performed by using the cdf KC of t = C(u,v,w) (Barbe et al., 1996). Besides the 
dependence structure of Archimedean copulas, C is uniquely determined by the 
function KC (Genest & Rivest, 1993). Since t ∼ KC and KC is continuous, then the 
random variable KC ∼ U(0,1). So, an estimated copula fits the sample when a QQ-plot 
KC vs standard uniform quantiles has a roughly linear pattern. The goodness of fit can 
be evaluated by p-values related to a Kolmogorov-Smirnov test. 
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