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Abstract The hydroclimatic variability that occurs over various time scales 
has implications for the management of land and water resources systems. 
This paper describes the use of the empirical mode decomposition (EMD) 
method to identify oscillations/variability in annual streamflow time series. 
The EMD method is also applied to bootstrap replicates of the original time 
series to test the statistical significance of the identified oscillations. The EMD 
is a relatively new technique and has several advantages over spectral time 
series analysis techniques. It is also relatively easy to use as the intrinsic 
oscillations are automatically and adaptively selected from the time series. The 
EMD analysis is applied to annual streamflow time series from 20 catchments 
across the world. The results indicate that statistically significant oscillations 
of 11–14 and 20–25 years are observed in some, but not all, of the time series.  
Key words  cycles; empirical mode decomposition; global; hydroclimatic; interdecadal; 
oscillations; streamflow; variability 

 
 
INTRODUCTION 
 
Hydroclimatic variability occurs over various time scales (seasonal, inter-annual, 3–7 
year oscillations associated with El Niño/Southern Oscillation (ENSO), interdecadal, 
and “climate change”). The management of land and water resources involves design-
ing and operating to cope with this variability. For example, all water resources projects 
take into account seasonal and inter-annual variability, some authorities use ENSO-
based seasonal forecasts for operational water management, and most are now 
concerned with the potential impacts of climate change on hydrology and water 
resources. 
 This paper uses the empirical mode decomposition (EMD) method to identify 
oscillations in historical annual streamflow time series for 20 unimpaired catchments 
from different parts of the world. In EMD analysis, a time series is decomposed into a 
set of intrinsic mode functions (IMFs) that are mutually independent. The decom-
position is based on the direct extraction of energy (variance) associated with various 
intrinsic time scales that are automatically and adaptively selected from the time series. 
The EMD is a relatively new technique that is able to deal with both nonlinear and 
non-stationary data, and has several advantages over other spectral analysis techniques. 
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 The two objectives of this paper are to demonstrate the application of the EMD 
method on annual streamflow data and to make some general observations about 
oscillations in historical global streamflow data. 
 
 
EMPIRICAL MODE DECOMPOSTION 
 
The EMD method was developed by Huang et al. (1998) for adaptively decomposing 
signals, and is described in detail in Huang et al. (1998, 1999, 2003). The decomposi-
tion is based on the assumption that a time series is formed by the linear superposition 
of different natural oscillations in a system. The decomposed oscillations resulting 
from the EMD analysis are called intrinsic mode functions (IMFs), with the first IMF 
capturing the highest frequency oscillation and the last IMF capturing the lowest 
frequency oscillation. Unlike other spectral analysis methods, EMD can easily handle 
amplitude and frequency modulations in the natural oscillations (without the need to 
add harmonics), as well as non-stationarity (trend) in the data.  
 
 
Obtaining the IMFs 
 
The EMD method is described here using an artificial time series as an example (see 
Fig. 1, labelled “combined”). The 99 years of artificial data are made up of three 
components: a 7-year sine wave cycle, a 22-year sine wave cycle, and a step jump in 
the mean (90 in the first 50 years and 110 in the last 49 years). 
 There are four steps involved in obtaining the first estimate of an IMF, as 
illustrated in Fig. 2. The first step is to identify all the local extrema (see Fig. 2(a)). 
The second step is to connect all the local maxima with a cubic spline and all the local 
minima with another cubic spline (see Fig. 2(b)). The third step is to construct the 
mean of the upper and lower envelopes fitted by the splines (see Fig. 2(c)). The fourth 
step is to subtract the mean (Fig. 2(c)) from the original time series data to obtain the 
first estimate of the first IMF (Fig. 2(d)). 
 
 
Sifting to obtain an IMF 
 
Each IMF must satisfy two conditions: (i) the number of extrema (maxima + minima) 
and the number of zero crossings must be equal or differ by one; and (ii) the mean of 
the upper and lower envelopes (∆M – see Fig. 2(c)) must be close to zero. 
 To satisfy the above conditions, a sifting process is carried out where the four steps 
illustrated in Fig. 2 are repeated, each time using the latest estimate of the IMF as the 
input data. The iteration process eliminates the riding waves in the IMF and smoothes 
the uneven amplitudes. Sufficient iterations should be carried out in the sifting process 
to ensure that the above conditions are met, but too many iterations will lead to over 
smoothing, which results in a loss of information about the natural oscillations. 
 Various criteria for terminating the sifting process have been suggested (see Huang 
et al., 1999, 2003; Quek et al., 2003; Rilling et al., 2003). However, our analysis with 
various annual streamflow time series indicates that satisfying condition (i) (number 
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Fig. 1 Artificial time series made up of three components (7-year cycle, 22-year cycle 
and step jump in mean). 
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Fig. 2 Steps to obtain the first estimate of the first IMF. 

 
 
of extrema and number of zero crossings must be equal or differ by one), and ensuring 
that the number of extrema and number of zero crossings remain the same for five 
successive iterations, generally resulted in a very small ∆M and very small differences 
between ∆M in the final successive iterations. This termination criterion, which is used 
in the following EMD analysis, is consistent with the observations and 
recommendation of Huang et al. (2003). 
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Fig. 3 IMFs and final residual from EMD analysis of artificial time series. 

 
 
IMFs from the EMD method 
 
Once the sifting process has terminated and an IMF has been defined (e.g. IMF1), a 
residual (R1) is obtained by subtracting the IMF from the original data (R0). The resid-
ual is then used as the input data, and the above steps are repeated to obtain each sub-
sequent IMF. This process of extracting IMFs from the original time series is carried 
out until the residual does not contain a complete cycle. This final residual represents 
the trend in the data, which may be an incomplete cycle with a longer period than the 
length of record, or it may be a monotonic trend. The sum of the IMFs and the final 
residual is the original time series. 
 The IMFs and the final residual obtained from EMD analysis of the artificial data 
in Fig. 1 are shown in Fig. 3. IMF1 is a 7-year cycle, IMF2 is a 22-year cycle, IMF3 is 
a 34-year oscillation (noise/error from the analysis representing a small proportion of 
the total variance), and the final residual shows the trend in the data (the step jump in 
mean of the artificial data). 
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Fig. 4 IMFs and final residual from EMD analysis of annual streamflow time series 
for Senegal River at Dagana. 

 
 
Significance of oscillations in time series data 
 
Figure 4 shows results from the EMD analysis of 62 years of annual streamflow time 
series for the Senegal River at Dagana. The EMD analysis identified oscillations with 
average periods of 3.1 (IMF1), 6.1 (IMF2), 11.6 (IMF3) and 26.5 years (IMF4). 
 Results from EMD analysis can be summarized in a lnT vs lnE plot (ln period/-
oscillation vs ln energy/variance, see Wu & Huang, 2004), with a data point for each 
IMF (Fig. 5). The energy for each IMF is defined as the proportion of variance in the 
original data accounted for by the IMF. The earlier IMFs have higher energies, and the 
sum of energies from all the IMFs and the final residual is equal to one if the IMFs are 
mutually independent (orthogonal). The choice of sifting termination criteria also 
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Fig. 5 lnT (period) vs lnE (energy) plot from EMD analysis of annual streamflow time 
series for Senegal River at Dagana. 

 
 
influences the level of IMF independence and the criteria described above and used 
here balances the trade off between IMF independence and over sifting the IMFs. 
 The statistical significance of the variance accounted for by each IMF (and 
therefore the statistical significance of the period of oscillation) can be estimated by 
comparing the variance accounted for by the IMF in the data and the variance 
accounted for by the IMF in random (white noise) data. Envelopes for various statis-
tical significance levels are found in Wu & Huang (2004) for uniformly distributed 
white noise data. However, because the annual streamflow data are not uniformly 
distributed, and the IMFs from the EMD analysis are not consistently orthogonal, a 
bootstrapping method (see Efron & Tibshirani, 1993) is used here to estimate the 
statistical significance of the oscillations identified in the EMD analysis. In the 
bootstrapping method, 10 000 replicates of the same length as the original time series 
are generated, by resampling from the original data with replacement. The EMD 
analysis is then carried out on the 10 000 replicate time series, giving [10 000 × 
number of IMFs] points in the lnT vs lnE plot. The IMFs from the original time series 
are then compared against the IMFs from the bootstrap replicates (resampled original 
data with replacement) to estimate the statistical significance of the observed 
IMFs/oscillations in the original data (Fig. 5). For example, the bootstrap results 
indicate that the 26.5 year oscillation in the Senegal River annual streamflow data is 
statistically significant at α = 0.1 (90% level) (Fig. 5). 
 
 
EMD ANALYSIS OF GLOBAL STREAMFLOW DATA 
 
Data 
 
The annual streamflow data used in this paper are drawn from the global database of 
monthly streamflow data for over 1200 catchments described in Peel et al. (2001). The 
streamflow data are believed to be unregulated over the period of record in the  
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Fig. 6 Locations of streamflow gauging stations used in this study and average periods 
of statistically significant (at α = 0.1) oscillations from EMD analysis. 

 
 
Table 1 Streamflow gauging stations and summary of annual streamflow characteristics. 

Flow gauging station Catchment 
area (km2) 

Period of data 
(years) 

MAR* 

(mm) 
Cv*   r1

* 

South Saskatchewan River at 
Saskatoon 

141 000 1912–1967 (56) 62 0.38 0.43 

Kettle River at Near Laurier 9 840 1930–1983 (54) 266 0.24 –0.02 
Namakan River at Outlet of Lac La 
Croix 

13 400 1923–1987 (65) 256 0.32 0.37 

Gila River at Calva 29 700 1930–1983 (54)     9 1.10 0.03 
James River at Cartersville 16 200 1925–1983 (59) 374 0.31 0.10 
Orinoco River at Puente Angostura 836 000 1925–1988 (64) 1180 0.11 0.20 
Colorado River at Pichi Mahuida 22 300 1919–1979 (61) 184 0.35 0.13 
Senegal River at Dagana 268 000 1903–1964 (62)    81 0.23 0.30 
Niger River at Dire 340 000 1924–1989 (66) 94 0.28 0.75 
White Nile River at Malakal 1 080 000 1912–1981 (70) 28 0.19 0.75 
Zambezi River at Victoria Falls 517 000 1924–1977 (54) 78 0.33 0.48 
Po River at Piacenza 42 000 1924–1978 (55) 738 0.30 0.08 
Kemi River at Taivalkoski 50 800 1911–1971 (61) 332 0.21 0.19 
Somes River at Satu Mare 15 200 1925–1987 (63) 262 0.35 0.13 
Ob River at Salekhard 2 950 000 1930–1983 (54) 134 0.16 0.40 
Amur River at Komsomolsk 1 730 000 1933–1983 (51) 178 0.20 0.43 
Mekong River at Mukdahan 391 000 1924–1986 (63) 651 0.14 0.38 
Frankland River at Mt Franklan 5 800 1941–1902 (62) 28 0.63 –0.13 
Herbert River at Gleneagle 5 300 1922–2001 (80) 199 0.88 0.05 
Murrumbidgee River at Gundagai 21 100 1887–1954 (68) 154 0.56 0.31 
*MAR: mean annual runoff; Cv: coefficient of variation (standard deviation divided by the mean) of 
annual runoff; r1: lag-one serial correlation of annual runoff. 
 
 
database. Annual streamflow time series from 20 catchments are used here to demon-
strate the EMD method. The 20 catchments are larger than 5000 km2, have relatively 
long and unbroken streamflow data, and are chosen to provide coverage across the 
world. The catchment locations are shown in Fig. 6 and a summary of the annual 
streamflow characteristics is given in Table 1. 
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Table 2 Oscillations identified in EMD analysis of annual streamflow time series. 

Flow gauging station Periods of oscillations 
South Saskatchewan River at Saskatoon 3.1 6.9 13.0 19.6  
Kettle River at Near Laurier 2.8 6.4 14.6 23.0  
Namakan River at Outlet of Lac La Croix 3.0 7.0 13.6 20.0 28.5 
Gila River at Calva 3.2 6.4 12.5 19.6  
James River at Cartersville 2.9 5.6 12.2 18.3  
Orinoco River at Puente Angostura 3.2 7.2 15.3   
Colorado River at Pichi Mahuida 3.2 7.3 14.3 17.7  
Senegal River at Dagana 3.1 6.1 11.6 26.5  
Niger River at Dire 2.7 5.6 17.1 23.6  
White Nile River at Malakal 3.3 7.6 14.5 21.3  
Zambezi River at Victoria Falls 3.5 6.5 11.1   
Po River at Piacenza 2.7 5.6 10.2   
Kemi River at Taivalkoski 3.0 7.7 14.3   
Somes River at Satu Mare 2.8 5.6 9.7 19.3  
Ob River at Salekhard 2.8 7.8 14.6   
Amur River at Komsomolsk 2.9 7.2 11.8 22.5  
Mekong River at Mukdahan 3.2 6.8 15.0 19.7  
Frankland River at Mt Franklan 3.2 7.3 14.0 26.5  
Herbert River at Gleneagle 2.6 5.5 11.7 16.7 36.0 
Murrumbidgee River at Gundagai 3.3 6.5 13.8 21.0  
Average oscillation periods for the first, second, third, fourth (most catchments) and 5th (two catch-
ments) IMFs. 
Statistically significant oscillations (at α = 0.1) are highlighted in bold. 
 
 
RESULTS 
 
The EMD analysis is applied to the annual streamflow time series from the 20 
catchments (on the original time series and the 10 000 bootstrap replicates) to identify 
oscillations in the data and test their statistical significance. The average oscillation 
period of the IMFs are shown in Table 2, with the statistically significant (at α = 0.1) 
oscillations highlighted in bold. The statistically significant oscillations are also shown 
in Fig. 6. 
 
 
DISCUSSION 
 
The average oscillations of the first, second, third and fourth IMFs are about 3, 6–7, 
11–15 and 20–25 years respectively. The first and second IMFs are likely to be related 
to El Niño/Southern Oscillation (ENSO). The first IMF is not statistically significant 
because it contains most of the high frequency noise in the annual time series (see Wu 
& Huang, 2004). It is possible that EMD analysis of monthly streamflow time series 
will identify statistically significant oscillations related to ENSO because the first IMF 
is likely to have an intra-annual period and oscillations related to ENSO would be 
contained in subsequent IMFs. 
 The third IMF (11- to 15-year oscillation) is statistically significant (at α = 0.1) in 
six out of the 20 catchments and the fourth IMF (20–25 year oscillation) is statistically 
significant in three out of 15 catchments (five catchments do not have a fourth IMF).  
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Fig. 7 Annual streamflow time series for Senegal River at Dagana (with curve 
showing the sum of the fourth IMF and final residual from EMD analysis). 

 
 
The results are inconclusive but the number of statistically significant oscillations 
observed here is more than would be expected from a random sample. Oscillations 
with the above periods have also been reported in various studies of local rainfall and 
streamflow time series, and they have been attributed to the natural oscillations of the 
global atmosphere–ocean system and/or solar variability (see references in Burroughs 
(2003) and Peel et al. (2004)). 
 There are no obvious relationships between the statistically significant oscillations 
and catchment location, climatic zone, coefficient of variation of annual streamflow, or 
lag-one serial correlation of annual streamflow. However, the number of catchments 
used here is small, and further analysis with the entire global streamflow database 
(currently being conducted) may show some relationships. Nevertheless, any study 
with streamflow data will be limited by the homogeneity of the catchment conditions 
(e.g. land use change may have occurred over the period of record). 
 Although not all the streamflow time series show statistically significant 
oscillations, many data sets indicate that some interdecadal periods are considerably 
wetter/drier than others (Fig. 7). This interdecadal variability has implications for the 
management of water resources, in particular the security of supply in different decadal 
periods. 
 
 
CONCLUSIONS 
 
This paper demonstrates that the EMD analysis can be used to identify oscillations in 
annual streamflow time series. The EMD analysis can also be applied to bootstrap 
samples from the original time series to test the statistical significance of the identified 
oscillations. The EMD method is relatively easy to use as the intrinsic oscillations are 
automatically and adaptively selected from the time series. 
 The EMD analysis is applied to annual streamflow time series from 20 catchments 
across the world. The results indicate that statistically significant oscillations of 11–14 
and 20–25 years are observed in some, but not all, of the time series. 
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