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of Satellite Remote Sensing in the 
Prediction of Ungauged Basins  
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INTRODUCTION AND STATEMENT OF THE PROBLEM 
The number of ungauged basins or under-gauged basins is continually on the increase. 
The main reason for this is lack of resources, both financial and personnel-based. The 
problem is greater in developing countries where the problem of inadequacy of water 
resources requires periodic monitoring for societal needs. 
 In an ungauged catchment, in addition to lack of observations of streamflow (Q), 
there may not be observations of precipitation (P, which is obtained using raingauges 
from a neighbouring catchment and/or radar rainfall data) and evapotranspiration (ET). 
Hence in a simple water balance: 

 ∆S = P – Q – ET  (1) 

the lack of direct observations of the change in storage (∆S) implies that in order to 
reduce the uncertainty estimates of Q, the uncertainty of ∆S, ET and P need to be 
reduced. Two methods, viz. hydrological models and indirect observations via satellite 
remote sensing, can help in reducing uncertainty in the solution of the above equation. 
 Estimates of precipitation, soil moisture/storage change and evapotranspiration 
can be accomplished using various satellite sensors (see Table 12.1) and the change in 
storage can be estimated using soil moisture microwave sensors. 
 
CAPABILITIES OF SATELLITE DATA 
Land surface modelling has faced limitations in the past due to the lack of spatially 
distributed data on land surface characteristics as well as variables in water and energy 
budgets, namely surface temperature and soil moisture. Soil moisture is a crucial 
component of both the water and energy budget. The absence of spatially distributed 
observations of soil moisture makes it very difficult for distributed hydrological model 
validation especially with respect to the water budget. Comparison of the model and 
the observed streamflow does not ensure distributed water budget validation for the 
hydrological model. There could be errors in the infiltration and the evaporation which 
may balance each other and thereby attain water balance but the individual components 
(infiltration and evaporation) as well as soil moisture could be incorrect. It is therefore 
imperative to use other data sets to ensure the spatially distributed validity of these 
models as well as validity of the individual components of the water and energy 
budgets. 
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Table 12.1 Hydrological variables and the satellite sensors that estimate them, with an index of 
the various satellite and sensor acronyms.  

Hydrological variable Satellite sensor (spatial resolution) 
Vegetation MODIS (1 km); AVHRR (1–8 km); TM (400 m) 
Surface temperature    AIRS/AMSU (15 km); MODIS; AVHRR; ASTER (90 m) 
Topography SRTM (30 m) 
Water level TOPEX (~1 km); ERS-1/2 (~1 km) 
Terrestrial water storage GRACE (1000 km) 
Soil moisture SSM/I (25 km); AMSR (50 km); TRMM (50 km); RADARSAT (10 km) 
Atmospheric profiles AIRS/AMSU 
Clouds GOES; CLOUDSAT (500 m) 
Precipitation TRMM (10 km); GOES 
Radiation GOES (1 km); AIRS/AMSU   
Snow AMSR, MODIS, AVHRR 

Index of sensor acronyms 
AIRS/AMSU Advanced InfraRed Sounder/Advanced Microwave Sounding Unit 
AMSR Advanced Microwave Sounding Radiometer 
ASTER Advanced Spaceborne Thermal Emission and Reflection  Radiometer 
AVHRR Advanced Very High Resolution Radiometer 
CLOUDSAT Cloud Satellite 
ERS European Remote Sensor 
GOES Geostationary Observation Earth Satellite 
GRACE Gravity Recovery and Climate Experiment 
MODIS Moderate Resolution Imaging Spectroradiometer 
RADARSAT Radar Satellite 
SRTM Shuttle Radar Topography Mission 
SSM/I Special Sensor Microwave Imager 
TM Thematic Mapper 
TRMM Tropical Rainfall Measurement Mission 

 
 Satellite observed surface temperature satisfies our requirement of being spatially 
distributed and having connections to both the water and the energy budgets. Surface 
temperature influences evapotranspiration (due to the dependence of the saturation 
vapour pressure on the surface temperature), hence the energy budget. Evapotrans-
piration is connected to the water budget as it determines the soil moisture content. 
 Comparison of surface temperature does not ensure that the model simulations of 
surface soil moisture are correct. There are various reasons for errors in the modelled 
soil moisture. The primary reason is the errors in the forcing inputs of precipitation and 
incoming solar radiation. Therefore, we need to compensate for these errors in the 
input forcings by assimilating the readily available spatially distributed satellite 
observed surface temperatures. The assimilated surface temperatures will be used to 
adjust the model-computed surface soil moisture. This adjustment will be carried out 
such that the new assimilated surface temperature balances the energy balance 
equation. 
 
A NEW WAY: DATA ASSIMILATION USING SATELLITE OBSERVATIONS 
The subject of assimilation of soil moisture data, or assimilation of meteorological data 
in order to estimate soil moisture more accurately, is a relatively new area of study 
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(McLaughlin, 1995). Previous studies (Entekhabi et al., 1994; Lakshmi et al., 1997) 
have demonstrated the use of microwave satellite data in estimating soil moisture. The 
assimilation of soil moisture from low-level atmospheric variables using a mesoscale 
model (Bouttier et al., 1993a,b) has shown that the assimilated soil moisture estimates 
help in the initialization of atmospheric models. Satellite estimates of surface skin 
temperature are used to adjust for the soil moisture (McNider et al., 1994; Ottle & 
Vijal-Madjar, 1994) and estimate with greater accuracy the surface fluxes and surface 
temperature. Other studies (Blyth, 1993) carry out assimilation by nudging the forecast 
model evaporation fraction using the satellite data and hydrological model computed 
evaporative fraction. The results are reductions in the predicted 2-m air temperature 
and vapour pressure after carrying out these assimilations. Another way in which 
satellite data has been used is for parameterization of hydrological models. In this 
regard, microwave satellite data is especially helpful (van den Hurk et al., 1997). 
 Figure 12.1 outlines the philosophy and rationale for carrying out the integration 
of satellite in situ data sets and the model output. In situ data are point based, as are the 
prognostic equations in most of the hydrological models. However, both these 
quantities are reasonably continuous in time. On the other hand, satellites observe the 
same region on the land surface periodically (twice a day for polar-orbiting satellites) 
and present a spatially averaged (over each spatial pixel) view of the land surface. The 
integration of the temporal continuity (model output and in situ data), along with the 
spatial continuity of the satellite data, offers an advantage to using either one of the 
approaches by itself. 
 

 
Fig. 12.1 Representation of the characteristics of models, in situ ground observations 
and remote sensing data. 

DATA ASSIMILATION 
Exploiting the spatial continuity of the 
satellite data and the temporal continuity 
of point observations and model physics 
and the control of point observations 

 
Modelling 

 
Ground 

Observations 

 
Satellite Data 

Continuous in time 
Point Physics 
Point/spatial average 
 inputs/outputs  

Point in space 
Continuous in time 

Averaged in space 
Discrete in time 

Adjust point  
parameters 

Check satellite 
retrieval 
algorithms 

Differences 
between 

spatial estimates 



V. Lakshmi  Chapter 12,  Standing Back Looking Forward: Role of Satellite Remote Sensing    121 

 

 
Fig. 12.2 Comparison of NOAA-10 TOVS derived surface temperatures at 07:30 h 
and 19:30 h on 31 March 1988 with the hydrological model computed values over 
the Red-Arkansas basin. All values are in degrees Kelvin. 

 
 In this chapter we compare the model computed surface temperature to the 
satellite observed surface temperatures and discuss the sources and reasons for these 
differences. The satellite surface temperatures used in this study are derived from the 
Tiros Operational Vertical Sounder (TOVS; Susskind et al., 1997). The effect of 
assimilation on removing the errors caused by incorrect input forcings will be studied. 
We will carry out spatially distributed comparisons over a large area in the Southern 
Great Plains of the USA (roughly 5° × 10°) and a time period of one year (August 
1987–July 1988), between the assimilated and the un-assimilated cases. The 
implications of the technique in the context of using it in land surface models within 
global climate models will be discussed with regard to the feasibility. 
 The assimilation of surface temperature is carried out using a nudging technique 
(Lakshmi, 2000). The hydrological model produces values of surface temperature and 
soil moisture. This surface temperature is compared to the corresponding satellite  
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Fig. 12.3 Difference between volumetric soil moisture for the top 1-cm layer for the 
rainfall input decreased by 20% (0.8P) and the normal (1.0P) with and without 
surface temperature assimilation. The difference is indicated by the bias (average 
difference over the one year period; bias) and the standard deviation (sdev). The 
case for increase in rainfall by 20% is indicated by 1.2P. 

 
observed value at the time of satellite overpass. (Incidentally, in this study there are at 
most two overpasses over a particular area in one day. However, in the time period, 
1989 to present, there are up to four overpasses in one day). Figure 12.2 displays the 
satellite and model output of surface temperature for one day corresponding to the 
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07:30 h and 19:30 h overpasses. After the comparison of the model derived and the 
satellite observed surface temperatures, the model surface temperature is “adjusted” to 
a value midway between the two. (A more realistic method would be to weight the two 
values using the error characteristics of the two estimates). This merged surface 
temperature is used to “recalculate” the soil moisture. 
 This nudging algorithm is used to correct the effects of the precipitation input bias 
of +/– 20% (increased and decreased precipitation). The comparison of the biased 
precipitation computed soil moisture with the “observations” (corresponding to no 
change in the precipitation) shows that assimilation of surface temperature from the 
07:30 h and 19:30 h surface temperatures from the TOVS improves both the bias and 
the standard deviation of the estimates (Fig. 12.3). 
 
TAKING STOCK: THE NEXT STEPS 
There are numerous challenges to the problem of prediction of ungauged basins. It is 
obvious that modelling or data (ground or satellite) alone cannot address these 
questions. This chapter presents one methodology for integration of hydrological 
model and satellite data to achieve better estimates of soil moisture under uncertain 
precipitation input. This method of satellite data integration also overcomes 
inaccuracies in model physics as well as parameter errors to achieve an observation-
consistent solution for the hydrological states. 
 The problem of prediction in ungauged basins is a challenging task. However, 
with challenge comes opportunity for innovative science and progress. We need to use 
this opportunity to test our knowledge and advance the boundaries of hydrological 
knowledge. At the heart of the matter is the estimation of the availability of water 
resources for societal needs such as human consumption, agriculture, power 
production, navigation, fisheries and wildlife and recreation. Indeed, estimation of the 
various components of the hydrological cycle would serve to obtain better seasonal 
forecasts. As traditional methods for estimating water resources (with the use of ground 
observations) become obsolete and expensive to maintain, non-traditional methods of 
using satellite data along with modelling and data assimilation becomes a reality. 
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