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INTRODUCTION 
The idea of ecological optimality is very attractive for those faced with the challenge of 
hydrological prediction in data-sparse environments. There are many alternative ways 
of stating what is meant by ecological optimality (some are summarized below), but for 
now it is enough to give a loose definition: the ecological optimality hypothesis (EOH) 
holds that evolutionary selection pressures drive ecosystems towards a state of 
maximum utilization of available light, water and nutrient resources for the production 
of biomass, so that long-term net primary production (NPP) over many reproductive 
cycles takes the largest possible value under the constraints of available resources. 
Such an hypothesis is intuitively plausible: if there are unutilized resources in the 
system, then some species or functional type will adapt or move in to use these 
resources, either co-existing with or outcompeting the under-utilizing species, and 
thereby increasing the overall NPP until all resources are maximally utilized. This 
version of an EOH also embodies the idea of an optimum ecological equilibrium 
attained under statistically steady resource availability from climate and non-biological 
soil conditions (Woodward, 1987).   
 The attractiveness of an EOH for hydrological prediction is that, provided it is 
true, it provides a powerful constraint on the NPP and the associated use of resources 
by the ecosystem, one of the major resources being water. Since NPP and transpiration 
are closely coupled, a constraint is available on transpiration, often the largest loss flux 
in the water balance. Transpiration is both important in its own right and also a major 
determinant of other loss fluxes in the water balance, through conservation of mass. In 
addition to practical applications in hydrological prediction, an EOH has fundamental 
implications in Earth system science. It provides long-term constraints on the relation-
ship between NPP and the water cycle, which (since the water cycle is climatically and 
energetically constrained at large scales) places bounds on large-scale NPP. Similarly, 
an EOH implies a relationship between NPP and nutrient fluxes which can be used to 
constrain some aspects of nutrient (especially nitrogen) cycles. 
 Despite these attractions, most current forms of the EOH face significant difficulties. 
Perhaps the most important is that ecosystems exist in a time-varying environment, 
both because of variability in external forcing (particularly climate and human 
influences such as clearing, grazing and cultivation) and also because of internal 
dynamics associated with the growth and decay of individuals and predation. 
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Therefore, optimization of production must occur over averaging times long enough to 
account for both the growth and reproduction of individuals and also to average out the 
consequences of climate variability and exogenous disturbances for growth and 
reproduction. A second issue is that optimality is a concept that can be—and has 
been—applied at many hierarchical levels from individual, to single-species 
community, to ecosystem. It is not clear that the factors driving systems toward 
optimality at each of these levels are identical, other than through an origin in the 
evolutionary pressure of natural selection.   
 The aims of this chapter are to survey ecological optimality both as a principle and 
as a tool for hydrological prediction, and to attempt to identify some major future 
directions in a rich and exciting field. The next section reviews several extant lines of 
work, and the third section attempts to unify the main precepts of these lines in a single 
formulation. The fourth and fifth sections, respectively, examine the steady-state and 
dynamic (time-dependent) formulations of an EOH. Finally, “Looking Forward” 
considers future directions.  
 
STRANDS OF EXISTING WORK ON ECOLOGICAL OPTIMALITY 
There are several ways that optimality principles have been formulated and applied in 
studies of biophysical processes. At risk of oversimplification, three strands can be 
identified: “plant functional”, “ecohydrological” and “resource use” optimality. 
 
1.  Plant functional optimality  
Optimality approaches have been used to study the behaviour of individual plants, 
starting from a hypothesis that plants maximize photosynthetic carbon production over 
some defined time period, including a reproductive phase if this period is long enough, 
subject to resource (water, light and nutrient) constraints. In several specific forms, this 
hypothesis has been applied: (a) to derive optimal stomatal trajectories and responses 
to atmospheric humidity over daily time scales (Cowan 1977; Cowan & Farquhar, 
1977); (b) to study the water use strategies of plants over seasonal or drought time 
scales (Cowan, 1982, 1986; Berninger et al., 1996; Mäkelä et al., 1996); (c) to 
determine optimal carbon and nitrogen allocation strategies between roots and shoots 
(Schulze et al., 1983; Iwasa & Roughgarden, 1984; Johnson, 1985; Ǻgren & Ingestad, 
1987; Hilbert, 1990; Hilbert & Reynolds, 1991); and (d) to investigate optimal 
reproductive growth patterns (Cohen, 1971; Vincent & Pulliam, 1980; Iwasa & 
Roughgarden, 1984). These investigations have achieved some significant successes in 
semi-quantitative prediction of phenomena such as stomatal closure in response to air 
dryness (saturation deficit) and increasing carbon allocation to roots in response to 
aridity. 
 
2.  Ecohydrological optimality  
In hydrology, the term “ecological optimality” is associated almost uniquely with the 
work of Eagleson (1978a,b,c,d,e,f,g, 1982, 2002); see also the review of Hatton et al. 
(1997). This extensive theory uses a statistical-dynamical approach to derive optimum 
or climax properties of vegetation such that productivity is maximized for a given 
climate. In his original (1978) work, Eagleson made three hypotheses: (a) over short 
times (a few plant generations), vegetation canopy density equilibrates to minimize 
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plant water stress and maximize soil moisture (treated as a drought-stress buffer);  
(b) over long (successional) times, vegetation species composition adjusts to maximize 
soil moisture; and (c) over geological time scales, vegetation modifies soil hydraulic 
properties to maximize the optimal canopy density from hypothesis (a). Recently, 
Kerkhoff et al. (2004) criticized these hypotheses on both fundamental ecological 
grounds and for failing empirical tests, concluding that “the poor performance of the 
model was probably due to the inadequate treatment of water-limited transpiration”. 
However, in his recent monograph, Eagleson (2002, p.322) stated his basic hypothesis 
in a way which is much closer to the tenets of other work reviewed in this section: 
“[There exists] a relentless evolutionary pressure toward a bioclimatically optimal 
vegetal state assumed to be that of maximum probability of reproductive success, 
which we equate to maximum seed productivity and hence, by proportion, to maximum 
biomass productivity”. From this principle Eagleson (2002) used biophysical process 
knowledge to identify five “optimization opportunities”: optical, mechanical, thermal, 
hydrological and nutritional. 
 
3.  Resource use optimality and the resource balance hypothesis  
A number of ecologists concerned with the global distribution of vegetation and 
terrestrial NPP (Mooney & Gulmon, 1979; Bloom et al., 1985; Chapin et al., 1987; 
Field, 1991; Field et al., 1992, 1995) have adopted a “resource balance hypothesis” 
(RBH) which asserts that “the combination of species sorting through ecological 
processes and plant acclimation through physiological, biochemical and morpho-
logical processes should tend to make all [acquired light, water and nutrient] resources 
equally limiting to growth” (Field et al., 1995, p.79). This resource-balance state is 
assumed to coincide with one in which NPP is maximized. The RBH goes beyond 
other statements of an EOH given above, in asserting that maximization of productivity 
occurs when all resources acquired by the vegetation to generate NPP (considered over 
the long term and at ecosystem level) are equally limiting. Experimental evidence for 
the RBH has come from Bloom et al. (1985), Chapin et al. (1987), Field et al. (1992), 
and recently from Shipley & Meziane (2002). 
 Three impressions stand out from this brief review. First, there is a high degree of 
convergence among different forms of the EOH in their choice of “goal function” for 
the optimization; all assert that plant biomass production (sometimes explicitly com-
bined with reproduction or seed biomass production) is maximized by adaptive 
evolutionary selection. Second, there is a wide range of choices of the system 
properties which are varied to achieve optimality, depending in part upon the time scale 
considered: these may include stomatal conductances, allocation ratios, plant 
morphology, species composition, nutrient cycling and more. Third, the three identified 
strands of work have developed remarkably independently; few of the papers 
mentioned cite work from outside their own strand. The “Looking Forward” section 
returns to the question of the commonalities among these strands. 
 
A UNIFIED FRAMEWORK FOR ECOLOGICAL OPTIMALITY 
At this stage it is desirable to have a formal framework which is as comprehensive as 
possible, so that specific predictions emerge as appropriate special cases. The starting 
point is to note that an EOH fundamentally involves four aspects: (a) a living system 
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(plant, ecosystem) obeying a set of biophysical laws such as conservation of mass and 
energy and the associated laws of mass and energy transfer; (b) a goal for the system, 
defined in all the work reviewed above as maximization of biomass or seed production; 
(c) a set of properties of the living system which, when varied, lead to different degrees 
of success in meeting the goal; and (d) an optimization process by which successful 
properties are selected. In nature, the optimization process is adaptive evolutionary 
selection. A mathematical theory for analysing problems with these four aspects is the 
theory of constrained optimization and optimal control, and the aspects correspond 
respectively to the system constraints, the goal function, the control variables and the 
search strategy. They fit together as follows: 
 Let a living system (plant or ecosystem) be characterized by a state vector (set of 
state variables) x(t) = {xi(t)}, consisting of the carbon, water, thermal energy (heat) and 
nutrient stores in the system at time t, expressed in mass or moles of entity (Joules in 
the case of energy) per individual for a plant or per unit ground area for an ecosystem. 
As in Raupach et al. (2005a,b), the rate equation governing xi is: 
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where fij is the flux changing store i by process j (including flows across physical 
boundaries and internal biogeochemical transformations); m(t) is a set of meteorol-
ogical or climate forcing variables (precipitation, insolation, temperature, humidity, 
wind); and p(t) is a set of parameters characterizing processes (such as maximum 
photosynthetic capacity) and soil properties (such as soil depth and hydraulic 
properties). Equation (1) embodies two distinct principles, the first being mass or 
energy conservation (∂xi/∂t = ∑fij, summing over j) which is always physically exact. 
The second is the set of “phenomenological equations” fij = fij(x,m,p) determining the 
dependence of the fluxes on stores (x), meteorology (m) and parameters (p). These 
equations are always empirical to some extent, even in strongly mechanistic models, 
and are dependent on the scale of the space and time averages used to define the 
variables in equation (1). 
 Equation (1) is a coupled set of differential equations determining the stores x(t) 
and thence the fluxes fij(t). However, it is also useful and often sufficient to solve a 
much simpler problem, that of finding the steady or equilibrium state of the system. 
This arises when the storage changes in equation (1) are much less than the fluxes, 
which is the case under temporal averaging in statistically steady-state conditions. 
Denoting long-time averaged quantities by upper-case letters, equation (1) reduces in 
these conditions to (for each store i): 
 ( )0 , ,ij

j
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Thus, in steady-state conditions, the differential governing equations reduce to a set of 
algebraic equations. It is important to note that the phenomenological equations 
determining the fluxes in equation (2) are “coarse-scale” relationships between 
averaged quantities, differing from their non-averaged or “fine-scale” counterparts in 
equation (1) because of nonlinearities in the fine-scale equations fij = fij(x,m,p) 
(Raupach et al., 2005a).   
 The state vector x(t) consists in general of all stores influencing the fluxes fij in 
equation (1), and thus includes carbon, water, heat and nutrient stores. As a simple 
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example, consider a system defined by a set of carbon stores c = {ci} and a single water 
store w, neglecting the influence of heat and nutrient stores. For this system, x = {c,w}. 
The carbon stores, with units [mol C m-2] and including (for example) leaf, wood, root 
and seed carbon, are governed by: 

 ( ), , ,i
i i i

dc a g w k c
dt

= −c m p  (3) 

where g(c,w,m,p) [mol C m-2 day-1] is the NPP or growth carbon flux, a function of 
stores, meteorology and parameters; ki [day−1] is the decay rate of carbon out of store i; 
and ai is the allocation coefficient for growth into carbon store i, such that ∑ai = 1 over 
all i. The single water store w is conveniently expressed as a relative soil moisture 
content w (0 in air-dry and 1 in saturated conditions), governed by: 

 x P T S R
dwW q q q q
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= − − −  (4) 

where qP, qT, qS and qR [m water d−1] are the water fluxes due to precipitation, 
transpiration, soil evaporation and runoff, and Wx [m water] is the store capacity. 
Noting that qP is an exogenous meteorological forcing variable and part of m, the water 
fluxes depend like the NPP on (c,w,m,p).   
 Aspect (a) of the EOH, the constraint set, is now defined. Equations (1) and (2) 
form the generic constraints of the problem in time-varying and steady-state 
conditions, respectively, and equations (3) and (4) provide examples of these cons-
traints for a simple system. The next task is to define aspects (b) and (c), the goal 
function and control variables. For all the studies reviewed in the previous section, the 
optimization problem has the general character “maximize the biomass carbon gain 
(over a defined time period) for an ecosystem, a plant, or for some specific organ such 
as seed, by optimal adaptation of plant behaviour or attributes”. Over an interval from 
t = 0 to T, the total carbon gain is ∑[ci(T) − ci(0)], and the seed carbon gain is 
cs(T) − cs(0), where i = s is the seed carbon pool. Therefore an appropriate goal 
function is the weighted carbon gain:  

 ( ) ( )0i i i
i
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where bi are a set of weights for the stores ci.  If bi = 1 for all i, then J is the total 
carbon gain; if bs = 1 and bi = 0 for all other i, then J is the carbon gain in the seed pool 
only. Using equation (3), this goal function can be written for the simple model system 
as: 
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The optimization problem now becomes: maximize J, subject to constraints on c and w 
from equations (3) and (4), by varying plant behaviour or attributes which can be 
changed by adaptation. The behaviour or attributes to be varied are the control 
variables of the optimization problem. They may include some of the parameters p 
(such as properties of the stomatal conductance), the allocation ratios ai, or the decay 
rates ki (as in deciduous systems). The set of control variables will be denoted by u(t), 
so that J in equation (6) becomes a functional (function of a function) J[u] of u(t), to be 
maximized by varying u(t). 
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 If the problem is reduced from its full time-dependent form to the steady-state 
form by taking a time average as in equation (2), then the goal function needs to be 
modified because dci/dt = 0 in the steady state, so J in equation (6) is zero.  The logical 
steady-state equivalent is to require maximization of the time-averaged production 
G(C,W,M,P), subject to the constraints of equation (2). The average production must 
be expressed in terms of time-averaged quantities since only these are available in a 
steady-state analysis. In general, the coarse-scale phenomenological equation specify-
ing the averaged G(C,W,M,P) is not the same as that for the fine-scale (short-term) 
production g(c,w,m,p) (Raupach et al. 2005a). 
 The last aspect (d) of the EOH is the search strategy for finding the optimal 
control variables u(t) which maximize J. In nature, this strategy is adaptive evolution. 
It is possible to replicate this process algorithmically through the use of genetic 
algorithms, an approach with significant advantages including the ability to find a 
global maximum in J when there are multiple local maxima in u space. However, this 
paper is based on long-standing alternatives which yield opportunities for analytical 
insight, based on the theories of constrained optimization, calculus of variations and 
optimal control. The following two sections survey the application of these theories to 
steady-state and dynamic (time-dependent) ecological optimality, respectively. In each 
case a mathematical theorem is outlined and then applied. 
 
ECOLOGICAL OPTIMALITY IN THE STEADY STATE 
The necessary mathematical foundation is a basic theorem found in many textbooks on 
mathematical analysis, which will be referred to as the constrained optimization (CO) 
theorem. 
 
 

The constrained optimization (CO) theorem The aim is to find a vector of Nk control 
variables, u = {uk}, which locally extremizes (maximizes or minimizes) a given scalar 
function j(u). If there are no constraints on the allowable u (and if j(u) is smooth 
enough) the problem is easy: find the uk satisfying the K equations ∂j/∂uk = 0. 
However, suppose also that there are Nm constraints on u, of the form fm(u) = 0 (where 
M < K, otherwise the constraints fix u completely). The problem is now harder, but it is 
solved by introducing Nm “undetermined Lagrange multipliers” λm and forming the 
Lagrangian L(u,λ) = j(u) + ∑λmfm(u). The CO theorem states that the control vector u 
which extremizes j(u), subject to constraints fm(u) = 0, is obtained by solving the 
unconstrained problem of extremizing L(u,λ) in both u and λ; that is, solving the 
Nk + Nm equations ∂L/∂uk = 0 and ∂L/∂λm = 0 for the Nk + Nm unknowns uk and λm. The 
resulting uk are the optimal values. For proofs and examples, see Mathews & Walker 
(1964), Vagners (1974) and Pinch (1993). The Nm equations ∂L/∂λm = 0 imply that 
fm(u) = 0, and thus embody the constraints. 
 

  
 To apply the CO theorem to a basic problem in ecological optimality, consider a 
system in which the steady-state NPP G(C,W,M,P) is a known function, and with 
known steady-state decay rates Ki for the carbon pools (using upper-case letters for 
time-averaged quantities). The aim is to find the carbon allocation ratios Ai which 
maximize G, and thence G itself, the carbon stores Ci, and the water fluxes which 
depend on vegetation (QT and QS), at this optimum point.   
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 From equation (3), the steady-state carbon balance for each store Ci is 
AiG − KiCi = 0. The constraint is that the total mass of carbon is at steady state. 
Summing over all i, this becomes: 

 0=⋅−=−� CKGCKG
i

ii  (7) 

(since ∑Ai = 1). The control variables (u) are Ai. At steady state these are related to the 
stores by Ci = AiG/Ki, so the problem of finding Ai is equivalent to that of finding the 
stores Ci that maximise G, subject to Equation (7) as a constraint. Thus reformulated, 
the control vector u in the problem becomes C. The Lagrangian in the CO theorem is 
then given by: 
 ])([)(),( CKCCC ⋅−λ+=λ GGL  (8) 

where the function to be maximized is G(C) (with only the control variables C shown 
explicitly as independent variables) and where there is one Lagrange multiplier λ, since 
there is only one constraint. Applying the CO theorem, the optimum C occurs when 
∂L/∂Ci = 0 and ∂L/∂λ = 0. The latter equation simply restates the constraint, but the 
former shows that at the optimum: 
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Since ∂G/∂Ci is a known function of C, equation (9) determines the optimum Ci(λ) as a 
function of λ (which is as yet unknown). The appropriate value of λ, and thence the 
solution Ci(λ), is found by requiring that Ci(λ) satisfy the constraint, equation (7). 
 Figure 18.1 shows a geometrical interpretation of this solution, considering a two-
dimensional (2-D) system with just two carbon pools (C1,C2) so that representation on 
a plane is possible. A set of contour surfaces G(C) = constant are shown (these are 
lines in 2-D), along with the surface on which the constraint, equation (7), is satisfied 
(again a line in 2-D). The optimum solution has to lie on the constraint surface. The 
second part of equation (9) shows that it occurs where the constraint surface intersects 
a line along which the gradient ∂G/∂Ci is parallel to the vector of decay rates, Ki. This 
line is also shown; its intersection with the constraint surface is the optimum solution. 
The first of equation (9) indicates another geometrical interpretation (Pinch, 1993): the 
optimum occurs where the gradients of the goal function (G) and the constraint 
function (G −K·C) are parallel, that is, where the constraint surface is tangent to the 
contours of the goal function. 
 The above result is general for any NPP G(C,W,M,P). To make explicit 
predictions for the allocation ratios, consider a 2D system in which the carbon pools 
are leaf (CL) and root (CR), so that C = (C1,C2) = (CL,CR). A model is required for the 
NPP; this must represent explicitly the dependence of NPP on both leaf biomass (CL) 
and root biomass (CR), and also the effects of the meteorological forcing variables 
which influence NPP, assumed here to be light and water supply only. For illustrative 
calculations, a very simple NPP model is used in which G is assumed to be the inverse 
sum of a light-limited NPP GQLim and a water-limited NPP GWLim: 

 1 1 1QLim WLimG G G= +  (10) 

where GQLim is proportional to the incident flux of photosynthetically active radiation  
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ig.18.1 Geometrical interpretation of the optimal (maximum-growth) solution for 
arbon pools (C1,C2) = (CL,CR) = (leaf, root). The dashed lines are the contours of 
he NPP G(C) on the (C1,C2) plane. The solid heavy line is the set of points 
C1,C2) on which the carbon mass balance constraint, equation (7), is satisfied. 
he dashed heavy line is the set of points (C1,C2) on which the gradient ∂G/∂Ci is 
arallel to the vector of decay rates, Ki. The optimum solution is at the intersection 
f the solid and dashed heavy lines, and is also the point at which the tangent to the 
onstraint line (shown as a light solid line) is parallel to the contours of G(C). The 
ontours for G(C) are constructed using equation (12), with relative soil moisture 
 = 0.5 and other parameters as specified in the caption for Fig. 18.2. With these 

arameters, G = 0.26 mol C m-2 day-1 at the optimum point. Contours are at 
ntervals of 0.025 mol C m-2 day-1. 
 GWLim is proportional to the relative soil water content W. This form has the 
roperties that G approaches zero as either light or water supply 
 zero (G → 0 as GQLim → 0 or GQLim → 0), and G approaches the light-
 water-limited) value when the water-limited (or light-limited) value 
rge (G → GQLim as GWLim → ∞, and G → GWLim as GQLim → ∞). Simple 
QLim and GWLim are: 

0 0
;L R

Q Qx WLim W Wx
L L R R

C CF G F W
C C C C

� � � �
= α = α� � � �+ +� � � �

 (11) 

[mol C mol PAR-1] is a light use efficiency; αW [mol C mol water−1] is a 
fficiency; FQx [mol PAR m-2 day-1] is the incident flux of photosynthetically 
tion (PAR); FWx [mol water m-2 day-1] is a proportionality constant relating 
ited transpiration flux of water to the time-average relative soil moisture W 
water-limited conditions, transpiration [mol water m-2 day-1] is FWxW); and 
0 are scales which specify the values for CL and CR at which lack of leaf and 
ss limit light and water capture, respectively. The factors CL/(CL + CL0) and 
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CR/(CR + CR0), respectively, account for limitation of light uptake by lack of leaf and 
water uptake by lack of root.  The NPP is therefore given by: 

 ( )
1

0 01 1, L L R R
L R

L Q Qx R W Wx

C C C CG C C
C F C F W

−
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� �
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This model is not justified here, simply being used as a plausible description of the 
dependence of NPP on CL, CR and light and water supply. It yields the contours of 
G(CL,CR) in Fig. 18.1. 
 Explicit allocation predictions now follow from the requirement of equation (9). 
Using equation (12) to specify G, this requirement is: 

 ( )2 0 0
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Using the fact that CL = ALG/KL and CR = ARG/KR at equilibrium, a simple solution is 
obtained for the allocation ratios AL and AR: 
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 Figure 18.2 shows the behaviour of this solution as the equilibrium relative soil 
moisture W is varied. With decreasing W there is progressively more allocation of 
carbon to root as the vegetation responds to aridity by investing more biomass in 
water-harvesting organs. This reproduces the known ecological trend. 
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ig. 18.2 Allocation ratios predicted by equation (14) as a function of equilibrium 
elative soil moisture W. Parameters in equation (14) and the model for NPP G(C), 
quation (12), are: light use efficiency αQ = 0.04 mol C mol PAR-1; water use efficiency 
W = 0.005 mol C mol water-1; incident PAR flux FQx = 40 mol PAR m-2 day-1; 
roportionality constant relating soil-limited transpiration to relative water content 
Wx = 925 mol water m-2 day-1; scales for limitation of NPP and transpiration by lack 
f leaf and root, CL0 = 40 mol C m−2 and CR0 = 40 mol C m-2; leaf and root pool 
ecay rates KL = 1 year-1 and KR = 0.5 year-1. 
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ECOLOGICAL OPTIMALITY IN DYNAMIC SYSTEMS 
In dynamic or time-evolving systems the opportunities for optimization are much 
richer than in steady-state systems. The underpinning analytical framework is derived 
from the theories of calculus of variations and optimal control. Calculus of variations, 
originated in the eighteenth century by Euler and Lagrange, has the aim of finding a 
function u(t) which extremizes an integral J[u] akin to equation (6), subject to 
constraints akin to equation (1). In efforts to apply this theory to problems of spacecraft 
navigation in the 1950s, a central difficulty emerged: all functions in the calculus of 
variations need strong smoothness properties for the basic arguments to work, whereas 
control functions u(t) for many real-world problems (including ecological optimality!) 
turn out not to be smooth at all. The generalization to non-smooth functions is called 
optimal control theory, one of its main theorems being the Pontryagin Maximum 
Principle (PMP) developed in Russia in the 1940s and 1950s. This is the theorem 
needed here. Before summarizing the PMP, it should be noted that the term “control 
theory” is often misunderstood as implying some sort of central command mechanism. 
In fact the theory makes no such assumption: it merely seeks to identify best possible 
trajectories and makes no statements about how they are to be achieved. In this sense 
the word “control” is a misnomer arising from the engineering origins of the theory, 
and for ecological purposes the theory would be better construed as “time-dependent 
constrained optimization theory”. 
 
 

The Pontryagin Maximum Principle (PMP) Let x(t) = {xm(t)} be a vector of Nm state 
variables, obeying dynamic constraints specified by the given differential equations: 

 ( ) ( )( ) ( ) 0, ; 0d dt t t= =x f x u x x  (15) 

where u(t) = {uk(t)} is a set of Nk time-dependent control variables. The aim is to find 
the functions u(t) which maximize a goal function J, defined as the integral over the 
time interval 0 ≤ t ≤ T of a specified scalar function j(x,u): 

 [ ] ( ) ( )( )
0

,
T

J j t t dt= �u x u  (16) 

The PMP states that the optimizing u(t) are given by maximizing the Hamiltonian: 
 ( ) ( ) ( ), , , ,m m

m
h j f= + λ�x u λ x u x u  (17) 

with respect to the control variables u(t) at each instant t, where x(t) and λ(t) obey the 
equations: 

 ( )( ) ( )( )0with 0 ; with 0m m

m m

dx dh h T
dt dt x

λ∂ ∂= = = − =
∂λ ∂

x x λ  (18) 

These two sets of equations are called the state and costate (or dual, or adjoint) 
equations, and the Nm variables λ(t) = {λm(t)} are called the costate (or dual, or adjoint) 
variables. They are analogous to the Lagrange multipliers in the CO theorem. One can 
interpret λm(t) as the marginal benefit to the overall goal function J of a change in xm(t) 
induced by a small perturbation δu in the control variables at time t (Iwasa & 
Roughgarden 1984). For accounts of the underlying mathematics, see Pinch (1993) and 
Casti (2000). The PMP has predictive applications in physics, engineering, economics, 
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ecology and other fields, and important procedural applications in data assimilation and 
model-data synthesis (Raupach et al., 2005b). 
 The PMP requires a three-step process to find an optimum trajectory: (a) find x(t) 
by integrating the state equations forward in time from t = 0 to T; (b) find λ(t) by 
integrating the costate equations backward in time from t = T to 0 (since the boundary 
condition is at t = T); and (c) find the control variables u(t) which maximize the 
Hamiltonian h(x,u,λ) at each instant. It is crucial that u(t) need not be continuous. An 
important case in which u(t) is not continuous arises when the Hamiltonian is linear in 
u, which happens if j(x,u) and fm(x,u) are linear in u. In this case the components of the 
optimum u(t) jump discontinuously between their minimum and maximum possible 
values without taking any values in between, a situation known as “bang-bang control” 
(Pinch, 1993; Casti, 2000). For example, suppose that components of u(t) can vary 
between 0 and 1, and that h is a linear combination ∑hkuk of these components (where 
the hk are functions of x and λ). The choice of u that maximizes h is to set uk = 1 for the 
k value corresponding to the largest of the hk, and uk = 0 for all other k values. 
 

 
 As an ecological example, consider the problem of choosing time-dependent 
allocation coefficients ai(t) to maximize the growth integral J defined by equation (6). 
The state variables (x in the PMP) are the carbon stores c(t); the dynamic constraints 
(fm) are given by equation (3); the control vector (u) is the vector of allocation 
coefficients a(t) = {ai(t)}; and the integrand (j) of the integral goal function (J) is the 
weighted growth ∑bi(aig − kici), where bi are weights defined in equation (5). The 
Hamiltonian for this system is: 
 ( ) ( ) ( )( ), , , , ,i i i i ih b a g w k c= + λ −c a λ c m p  (19) 

Since this is linear in the control variables ai, the control has “bang-bang” character. 
Given that 0 ≤ ai ≤ 1 and ∑ai = 1, it follows from the PMP that the vector a(t) = {ai(t)} 
which maximizes h with respect to a at leach instant t is of the form (0,…0,1,0,…,0), 
where the single component 1 is associated with the store i for which (bi + λi) is largest. 
This depends on the costate variables or marginal benefits λi(t), which are determined 
by the costate or adjoint equation dλi/dt = −∂h/∂ci. The λi(t) determine which store this 
is, and in control theory are called switching functions (Pinch, 1993).   
 Even without solving for the λi(t), two conclusions follow at this point. First, all 
carbon goes instantaneously to the carbon store (or organ, such as leaf, root, …) 
conferring the greatest instantaneous growth benefit (Iwasa & Roughgarden, 1984), 
which varies in time among the possible choices in response to changing external 
conditions. This dynamic view of allocation is quite different from the steady-state 
view summarized in the previous section: the trajectories of ai(t) are not simply the 
steady-state Ai with the addition of a perturbation, but rather the Ai are the long-time 
averages of discontinuous ai(t) which switch between 0 and 1. In fact, Ai is the time 
fraction for which ai(t) is 1, or bi + λi(t) is the largest component of the vector b + λ(t). 
This is also the fraction of time for which growth is limited by the gathering of 
resources through carbon store i.   
 Second, by defining the goal function as maximization of seed carbon (bi = 1 for 
seed and 0 for other stores), it follows as a particular case of the first conclusion that 
the optimal strategy for investment in seed is to switch entirely to seed production at 
some point in the developmental cycle, as for instance in the haying-off of grasses in 
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an annual cycle. This conclusion was reached by Cohen (1971) and Vincent (1980) and 
formalized by Iwasa & Roughgarden (1984) using the PMP as outlined here. 
 
LOOKING FORWARD 
This final section is a personal perspective on where ecological optimality stands now 
and is heading in the future, particularly from the standpoint of hydrological prediction. 
The discussion covers both the central hypothesis, the EOH expressed in various forms 
and various scales, and also the ensuing theoretical and predictive frameworks. 
 Starting with the present position, a major achievement from all three strands 
reviewed initially above (optimality in plant function, ecohydrology and resource use) 
has been the establishment and formalization of a holistic perspective. In this, the 
nonliving components of the terrestrial biosphere (such as transfer processes in water, 
soil and air) interact dynamically with the living components (ecosystems and the 
organisms of which they are composed). Thus, hydrology is more than fluid mechanics 
and ecology is more than biological processes writ large. A systematic framework for 
describing and predicting the dynamics of this richly coupled system is emerging, but 
there is a long way to go. Four future challenges are identified here. 
 
1.  Extending the state space and the level of coupling 
In the examples in this paper, the state variables defining the system have been carbon 
and water stores and only the carbon stores have been explicitly subjected to 
optimization, with the consequences of optimality for other stores and processes (in 
particular, water) being expressed through the phenomenological equations. In the 
future, it is important to develop a more comprehensive view of the coupled system 
and the opportunities for adaptive evolution to maximize overall production. This will 
involve including nutrients explicitly in the state space, and resolving all stores more 
precisely; for example, resolving water stores into soil layers or compartments defined 
by ease of water extraction, and carbon and nutrient stores into physically or bio-
chemically defined fractions as in many terrestrial biosphere models which do not use 
optimality concepts (Raupach et al., 2005a). There are many possibilities for 
application of an EOH to such models; for example, investigations of: (a) the nutrient 
balance of ecosystems and the fraction of system resource devoted to nitrogen fixation 
by indigenous legumes; (b) the interactions between water, biomass and nutrients; and  
(c) growth, allocation and morphology both above and below ground. Eagleson (2002) 
has already explored some aspects of these directions in a steady-state framework, for 
instance the responses of plant and leaf form to climate. A further application of 
optimality hypotheses in coupled terrestrial biosphere modelling is to aid in parameter 
estimation, as some parameters are converted into control variables and constrained by 
the optimization. 
 
2.  Further developing the dynamic perspective 
Perhaps the most important specific challenge raised in this chapter is to develop the 
implications of optimality hypotheses in dynamic (time-dependent) systems. The 
examples suggest that profound changes in understanding and outlook, and thence 
predictive ability, can be brought about by moving from a steady-state to a dynamic or 
time-evolving description of the system. Many important attributes of plant and 
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ecosystem function are invisible in a steady-state description and can only be 
understood and predicted by considering changes through time; examples include 
reproduction, responses to climate variability, and responses to episodic disturbances 
such as fire and flood. The ways that plants and ecosystems accommodate these factors 
are central to their long-term survival and fitness, so it is crucial that they be included 
in optimality analyses.   
 
3.  Developing new techniques for dynamic optimization 
There are significant technical challenges in solving dynamic optimization problems. 
Optimal control theory (as outlined in the previous section) is one possible approach 
that has been explored to some extent, and which offers promise for substantial further 
development. One route worthy of exploration is the use of stochastic optimal control 
theory, in which state, costate and control variables all become random processes 
described by probability distributions (rather than deterministic processes as in the 
above sketch of the PMP) and the goal function becomes the maximization of a 
probability, for example for long-term survival. An apparently quite different approach 
is the use of evolutionary computation (such as genetic algorithms or agent based 
modelling) to model real-world evolutionary processes. This approach has appeal in 
that it directly models the survival-based selection filter in adaptive evolution toward 
an optimum. However, it lacks an analytical foundation comparable to that established 
for constrained optimisation theory in any of its forms, which can make it nearly as 
difficult to understand why a model exhibits some behaviour as it is to understand why 
nature behaves as it does. Evolutionary computation looks and feels to be only 
distantly related to analytic optimal control theory or dynamical systems theory (upon 
which control theory is built), but there are basic connections between the two 
approaches. One (evolutionary computation) describes individuals explicitly and infers 
population behaviour by summing over all individual behaviours, while the other 
(dynamical systems and optimal control) models population behaviour directly in terms 
of the evolution of probability distributions or (in deterministic versions) trajectories of 
mean quantities. The theory of stochastic processes offers tools for relating and 
unifying these perspectives, at least for simple systems. A worthwhile endeavour is to 
explore the implications of such an approach in ecological optimality. 
 
4. Understanding dynamic optimality in relation to resilience and adaptive capacity  
The dynamic perspective on ecological optimality is important not only because it 
offers the potential of greater predictive capacity as suggested in point 2 above, but 
also for a yet more fundamental reason. The emergence of complexity in systems 
governed by relatively simple laws has been one of the defining scientific problems of 
the period since around 1980, and is likely to continue to be so (see for example 
Waldrop, 1994, Dennett, 1995, Holland, 1998). Systems such as landscapes, 
ecosystems, ant colonies, crowds, economies and societies are increasingly being seen 
as examples of “complex adaptive systems” (CAS) in which the emergence of 
complexity and organization is a common thread with universal properties. Among 
these properties are the ability to store and propagate information, growth-decay-
renewal cycles which offer the possibility for adaptive evolution, and the consequent 
emergence of self-organization at system level. In systems with this self-organizing 
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ability, nothing is static or steady-state: adaptations by one part of the system 
continually change the “fitness landscape” for other parts, inducing adaptive evolution 
in those parts. To describe such systems, the CAS-oriented ecological community is 
developing the ideas of “resilience” (the ability of a whole system or a component part 
to withstand external shocks without a catastrophic change in state) and “adaptive 
capacity” (the ability to respond to changes in external conditions through adaptive 
evolution).   
 The CAS perspective has several implications for ecological optimality. First, it 
provides context and limits for an ecological optimality hypothesis. Optimality is a 
useful concept only if the time scale needed for evolution towards a hypothesized 
optimal state is substantially less than the time scale for system disturbance or changes 
in the “system rules”, embodied, for example, in the phenomenological equations in 
equation (1). Second, the CAS view focuses attention on the spatial or system scale at 
which an EOH is applied. Optimality requirements (through the goal of maximization 
of long-term production) can be defined both for individuals and for the ecosystem as a 
whole, but it is evident that in a dynamically evolving, multi-component system, these 
two requirements do not generally coincide. Finally, the CAS view highlights the 
evolutionary tension between short-term and long-term optimality, or between 
production and survival for the component parts of a system which is both internally 
evolving and also subject to variable external forcing. The existence of multiple 
strategies for resolving this tension is one of the main drivers of diversification. 
Ecological optimality theory, especially in its dynamic forms, is well placed to 
contribute to better quantitative understanding of these fundamental questions. Thus, 
the practical task of hydrological prediction in ungauged catchments, through the use 
of an ecological optimality hypothesis, is connected with some of the most 
fundamental challenges facing contemporary science. 
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