
 

 

22 Physical-Statistical Models for 
Predictions in Ungauged Basins  
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INTRODUCTION 
Uncertainty is ever present in hydrological modelling, and hydrologists have always 
been keen to make use of new tools for better modelling. Bayesian methods have 
traditionally been seen as providing a framework to incorporate expert knowledge 
explicitly in modelling uncertainty, and so these methods have found widespread use in 
the hydrological literature (Vicens et al., 1975; Valdés et al., 1979; Qian & 
Richardson, 1997; Campbell et al., 1999). Recent advances in the statistical and 
geophysics literature are demonstrating that there is a new way of modelling that is 
neither statistical nor physical, but a fusion of both. This approach has been termed 
physical-statistical modelling by Berliner (2003). 
 Many of the applications to date have been in climate and other environmental 
fields. Berliner et al. (2000) developed a model for the evolution of Pacific Ocean sea 
surface temperatures with a view to forecasting the El Niño-Southern Oscillation 
phenomenon. The physical model in their application is in fact a physically-inspired 
statistical model. A much more clearly physical model was developed by Berliner et al. 
(2003), driven by a partial differential equation describing quasi-geostrophic flow for 
ocean streamfunction.  
 A feature of the work of Berliner et al. (2003) is the ease with which complex 
boundary conditions are handled, using an approach developed by Wikle et al. (2003). 
This follows from the hierarchical nature of the modelling, where the uncertainty of 
collections of variables is broken down into a product of simpler conditional models 
using Bayes’ theorem (Bernardo & Smith, 1994, p.2). Thus interior locations to be 
modelled can be expressed conditional on the boundary values in a straightforward 
way. A very readable introduction to hierarchical methods applied to environmental 
modelling is provided by Wikle (2003). 
 This chapter suggests a candidate framework for building physical-statistical 
models to apply to prediction problems in ungauged basins. By integrating multiple 
data sources, physical models and expert knowledge, we seek to provide optimal 
predictions. The next section provides a broad framework. Then we develop some 
theoretical details for the broad framework as an illustrative example. We do not 
consider this definitive, but seek to demonstrate the approach and inspire others to 
apply this sort of thinking to the problem and so develop better solutions. Some 
thoughts on model-fitting are also included. The fourth section provides outlines of 
some physical-statistical models in the literature, focusing particularly on the physical 
component. A discussion and some conclusions complete the chapter. 
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A SUGGESTED MODELLING FRAMEWORK 
We conceive of a framework for prediction in ungauged basins that links gauged and 
ungauged streamflow processes with available data and parameters, both physical and 
statistical in nature. The core idea is to develop probability models for all uncertain 
quantities using a Bayesian hierarchical approach (Berliner, 2003). We illustrate our 
thinking by assuming a physical process model linking streamflow to physical 
watershed characteristics that are measurable. This modelling implies the existence of 
physical parameters, and measurement implies the existence of statistical parameters, if 
only to represent measurement error. 
 Let D represent the available data, P the physical streamflow processes, Θ the 
statistical parameters and η the physical parameters. We use the contemporary notation 
[D,P,Θ,η] to denote uncertainty of these quantities, then applying Bayes’ theorem 
repeatedly we find: 
 [D, P, Θ, η] = [D | P, Θ, η] [P, Θ, η] 
                   = [D | P, Θ, η] [P | Θ, η] [Θ, η] (1) 
We see that the joint probability model may be written as the product of three simpler 
models, and this is the essence of hierarchical thinking. Whilst building a model for 
[D,P,Θ,η] directly may seem a daunting prospect, the conditional models derived via 
Bayes’ theorem are much less so. Joint complexity derived from relatively simple 
conditional models is an appealing feature of the hierarchical approach.  
 The first component on the right-hand side (rhs) of equation (1) is the so-called 
data model, and is essentially a likelihood function. The second component is a 
probability model for the physical streamflow process, and is termed the prior physical 
process. The final component is the prior parameters model; typically the statistical 
and physical parameters are considered a priori independent, and this model is factored 
into a product of individual probability distributions. In essence, the physical model 
can be used to constrain the data model to be physically reasonable. 
 
A modelling perspective 
In the derivation of equation (1) we simply applied Bayes’ theorem; we now apply a 
modelling perspective. Conditional on the process P and the statistical parameters Θ it 
seems reasonable to assume that the physical parameters η are of no further importance 
in modelling the data, so we reduce the data model to [D | P,Θ]. Typically there will be 
a number of sources of data, and we explore an example application below to see how 
this is handled. Following the same logic, the statistical parameters are of no 
importance in the prior process model, which reduces to [P | η]. The hierarchical model 
therefore becomes: 
 [D, P, Θ, η] = [D | P, Θ] [P | η] [Θ, η] (2) 

 
AN ILLUSTRATIVE EXAMPLE 
We now explore these ideas more deeply by developing a candidate framework for 
prediction in ungauged basins. The model developed here is only one possibility, and is 
designed primarily to illustrate the hierarchical approach. Many other choices are 
possible. We assume that P is comprised of a gauged and an ungauged streamflow 
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process, denoted R and R  respectively. Data are available on gauged streamflow (DR) 
and watershed characteristics for gauged and ungauged streamflow (DW and WD ). We 
assume a statistical model is used linking gauged streamflow and watershed 
characteristics, having parameters ΘW. Gauged and ungauged streamflow is calibrated 
to observed data, with parameters ΘR and RΘ  we seek to find the posterior distribution 
for RΘ . A physical model linking gauged and ungauged streamflow to watershed 
characteristics has parameters Wη  and Wη , respectively. It is important to note that we 
assume that this model is derived from physical considerations, and is not based on 
statistical modelling. These symbols are summarized in Table 10.1. 
 
Table 10.1 Nomenclature for the hierarchical model. 

PROCESSES  R Gauged streamflow process 
 R   Ungauged streamflow process 

DATA  DR  Gauged streamflow data 
  DW  Gauged streamflow watershed data 
 

WD  Ungauged streamflow watershed data 

PARAMETERS  ΘW  Statistical parameters linking gauged streamflow to watershed 
characteristics, assumed common to gauged and ungauged basins. 

  ΘR  Statistical parameters describing streamflow in gauged basin 
(rainfall–runoff model perhaps) 

 
RΘ  Statistical parameters describing streamflow in ungauged basin, not 

observable. 
 Wη  Physical parameters linking gauged streamflow and watershed 

characteristics 
 Wη  Physical parameters linking ungauged streamflow and watershed 

characteristics 

 
The data model 

From equation (2) the data model becomes ],,,,|,,[ WRRWWR RRDDD ΘΘΘ . It seems 
reasonable to assume conditional independence of the gauged and ungauged basins, so 
we may factor this as: 

 ],,|][,,|,[],,,,|,,[ WRWWRWRWRRWWR RDRDDRRDDD ΘΘΘΘ=ΘΘΘ  (3) 

where we retain ΘW in each conditional distribution as it is considered to be common 
across gauged and ungauged basins. We may apply Bayes’ theorem once again to the 
first component, ],,|][,,,|[],,|,[ WRRWRRWWRWR RDDRDRDD ΘΘΘΘ=ΘΘ . 
 The second component on the rhs is a model for the gauged streamflow data, so it 
seems reasonable to neglect the parameter ΘW. In typical regionalization applications 
the streamflow data would also be neglected in favour of the calibration parameters ΘR, 
but we will retain the general expression for the first component. The data model 
therefore becomes: 

 
],,|[],|[],,,|[

],,,,|,,[
WRWRRWRRW

WRRWWR
RDRDDRD

RRDDD
ΘΘΘΘΘ

=ΘΘΘ  (4) 
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The first component is essentially a regional model describing watershed character-
istics in terms of streamflow. The second component may be thought of as a calibration 
model for gauged streamflow. The final component can be thought of as a regional 
prediction model since it includes the unobservable parameter RΘ . Because no stream-
flow data are available, the prior process model makes a key contribution here. We will 
return to this point in a later section, providing an example that may be helpful. Note 
that a feature of the data model is the sharing of parameters between the respective 
model components. 
 In conventional applications of regionalization (e.g. Dyer et al., 1994) we would 
typically calibrate a rainfall–runoff model to the gauged watersheds, the resulting 
parameters would then be linked to watershed characteristics via a statistical model to 
quantify a regional relationship. This model would then be used to determine rainfall–
runoff parameters at the ungauged sites. Thus the conventional process takes place in 
stages, and a complete integration of uncertainty can be problematic. The data model 
defined by equation (4) incorporates all these elements in one step. Thus a form of 
feedback is possible during model-fitting, so each model component can borrow 
strength from the other components. We would expect to be able to achieve better 
predictions at ungauged sites as a result, even without the physical model. 
 
The prior process and parameters models 

The prior process model becomes: ],|,[ WWRR ηη , with the prior parameters model 
being: ],,,,[ RRRRW ηηΘΘΘ     
 It is beyond the scope of this chapter to explore these models in detail, although 
we will return to some issues in building process models in the next section and during 
the discussion. It does seem reasonable in the PUB context to assume conditional in-
dependence of the streamflow process components: ]|][|[],|,[ WWWW RRRR ηη=ηη . 
 
Model-fitting and making predictions 

To make a prediction of ungauged streamflow R  we need the posterior distribution of 
RΘ . In theory this is available as follows by applying Bayes’ theorem: ]|,,[ DP ηΘ  ∝ 

ηΘηΘ ,][|][,|[ PPD , and we have already developed a model framework for the rhs of 
this expression. The posterior for RΘ  follows by integrating over the unwanted 

quantities to give: �
ηΘΘ

− ηΘΘηΘηΘ=Θ
,/,

1 )/(]|][|][,|[]|[
RP

RR ddPdPPDcD , where 

�
ηΘ

ηΘηΘηΘ=
,,

]|][|][,|[
P

ddPdPPDc  ensures that the resulting density function 

integrates to 1. 
 Using the posterior ]|[ DRΘ  it is possible to generate probabilistic predictions for 
the ungauged streamflow process, integrating all sources of information available. 
However, it is rarely possible to calculate the integrals involved analytically, so 
simulation approaches are typically employed. It is not the purpose of this chapter to 
delve deeply into the practicalities of the suggested approach, but we note here some 
strands in the literature on algorithms to calculate posterior distributions of interest. 
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 The conventional simulation approach is known as Markov chain Monte Carlo 
(MCMC; Smith & Roberts, 1993). MCMC algorithms are potentially inefficient if the 
physical model is nonlinear with respect to the physical parameters, which is 
commonly the case. Berliner et al. (2003) suggested an approach using importance 
sampling (Bernardo & Smith, 1994, p.350–352) to avoid this problem. The basic 
algorithm generates an approximate sample from the posterior distribution as follows: 
(a) Generate a sample from the prior distribution [η,Θ]. 
(b) Using the sampled {ηi, Θi} generate an ensemble {ηi, ΘI, Pi} from the physical 

model. 
(c) Resample the ensemble into the posterior distribution with acceptance probability:  
 ],,|[/],,|[ jjjiiii PDPDq ηΘηΘ= � . 
Given a posterior sample it is possible to generate rainfall–runoff ensembles, for 
example, so forming a predictive distribution for streamflow. 
 
PHYSICAL-STATISTICAL MODELS IN THE LITERATURE 
We have mentioned a number of applications in the literature. We look here in a little 
more detail at a couple of examples that have a substantive physical model motivation. 
 
A model for air–sea interaction 
Berliner et al. (2003) developed a model for air–sea interaction, driven by a partial 
differential equation describing quasi-geostrophic flow for upper ocean streamfunction 
ψ, incorporating wind stress τ:  

 ψ∇+ψ∇γ−τ
ρ

+
∂
ψ∂β−ψ∇ψ−=

∂
ψ∂

�
�

�
�
�

� −∇ 422
2

2 1),(1
hz acurl

Hx
J

tr
 (5) 

Here ρ is density, H is depth and effects due to bottom friction (–γ∇2ψ) and lateral 
dissipation (ah∇4ψ) are incorporated; J denotes a Jacobian operator and x denotes the 
zonal direction. Further details are provided in the original paper. This is therefore a 
model for upper ocean streamfunction conditional on wind stress.  
 The joint distribution for the air and sea components was defined by building a 
simple unconditional atmospheric model. The model was implemented via a finite 
difference approach, and a hierarchical model was used to quantify uncertainty in the 
parameters. The model development here is clearly strongly motivated by physical 
considerations. A feature of the approach is its capacity to handle boundary conditions, 
which works naturally via the hierarchical approach by expressing the evolution of 
interior points conditional on boundary points. 
 
A model for air pressure 
Royle et al. (1999) developed a hierarchical model in order to produce gridded air 
pressure using radar scatterometer measures of wind speed. The physical model uses 
the fact that wind speed is proportional to the derivative of the corresponding pressure 
field, so that: 

 
y

yxpu
x

yxpv
∂

∂−∝
∂

∂∝ ),(,),(  (6) 

Here u and v refer to the east–west and north–south wind speed components respec-
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tively at coordinates x and y, with the pressure field is denoted by p. The data model is: 
[s | W, P] ~ N[KW, Σs], where s is the observed scatterometer data, K is a matrix 
mapping the scatterometer observations to the wind (W) grid; Σs is the observed data 
variance matrix. The process model is: [W | P] ~ N[BP, Σw|p],  [P] ~ N[µ, Σp]. 
 The matrix B calculates empirical spatial derivatives of pressure, and pressure is 
given a prior multivariate normal distribution. This can be derived from a local 
climatology for example. Even though no pressure data area available, it is possible to 
produce a map of gridded pressure using this model via the posterior distribution for P.  
 
DISCUSSION AND CONCLUSIONS 
We have explored Bayesian hierarchical methods for developing so-called physical-
statistical models, and have described a number of applications. It is evident that 
complex models capable of producing truly integrated sources of uncertainty are now 
feasible. In the work of Berliner et al. (2003) it is clear that these models incorporate 
advanced physical and statistical concepts. Note, however, that hierarchical methods 
can be used simply to integrate different data sources, rather than statistical and 
physical model components. For example, if a true physical model is not viable then 
perhaps physical indices representing watershed condition could be incorporated via a 
conceptual model. 
 To make the most of these models requires careful physical and statistical 
modelling, not one or the other. We note that much of the regionalization literature still 
uses classical linear statistical methods, which is perhaps not making the best use of 
statistical modelling. Additive models have been suggested by Campbell & Bates 
(2001) as a means to model nonlinear mechanisms in regionalization problems, and 
this was taken up independently by Latraverse et al. (2002) with interesting results. 
 Physical-statistical modelling is a new way of building models, and is necessarily 
highly multi-disciplinary in nature. There is much work to be done to turn this into a 
mature technology. A fundamental issue is the development of efficient model-fitting 
algorithms, and we have briefly explored one approach based on importance sampling. 
Much of statistical science has been driven by applications, and the difficulty of 
prediction in ungauged basins is such that new innovations in hierarchical modelling 
will result. There is much to be gained by bringing statistical and physical modelling 
together in one framework. 
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