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INTRODUCTION 

The period 2003–2012 was recently named as the International Association for 
Hydrological Sciences (IAHS) Decade for Predictions in Ungauged Basins (PUB) 
(Sivapalan et al., 2003), and a major initiative was launched to promote development 
of strategies offering improvements on the current knowledge in this important area of 
research. The PUB initiative is one amongst many such efforts that have attempted to 
draw attention to a problem that has been possibly the biggest challenge in hydrology. 
While many advances have been made, predicting flow in ungauged catchments 
remains as difficult as before.  
 The traditional approach to PUB involves selecting a hydrological model that 
works well across catchments, and calibrating its parameters as functions of relevant 
catchment attributes (area, slope, river length). Once developed, it can be applied in an 
ungauged catchment using only its attributes and the incident rainfall record. Examples 
of such approaches are many (see Pilgrim, 1997; Campbell & Bates, 2001, and the 
references therein), and their limitations are few as long as three basic assumptions are 
satisfied. These are: (i) the hydrological model is applicable for all flow regimes (for 
example, both rising and falling limbs of the hydrograph, both dry and wet antecedent 
conditions); (ii) the model is applicable across the many catchments it is intended for 
use in; and (iii) the parameter regionalization is appropriate, or, the catchment 
attributes selected to formulate the regionalization model are capable at representing 
the variability in model parameters across a range of catchments. Satisfying these 
assumptions is not simple, with violations known to lead to a multitude of errors 
resulting in incorrect designs and poor management decisions. 
 We present here a Bayesian view of rainfall–runoff model development and 
comparison, with suggestions on their usefulness for predictions in ungauged basins. 
We then proceed to present a new class of rainfall–runoff models (called a Hierarchical 
Mixture of Experts or HME) where the model is dynamic and switches between 
alternate states in a probabilistic fashion depending on catchment antecedent 
conditions. We emphasize that such a model where a “soft” transition from one state to 
another is allowed, is difficult to accommodate in a non-Bayesian framework, and 
highlights one of the many advantages of using Bayesian methods. These methods are 
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becoming an increasingly popular means for assessing parameter and model 
uncertainty. Bayesian inference addresses the issue of uncertainty by formulating a 
probability distribution (the posterior distribution) on the model unknowns (parameters 
and model outputs) that describe the uncertainty after taking into account the observed 
data. While recent years have seen an increase in applications of Bayesian methods to 
rainfall runoff modelling and parameter estimation (Kuczera, 1983; Romanowicz et al., 
1994; Freer et al., 1996; Kuczera & Mroczkowski, 1998; Kuczera & Parent, 1998; 
Bates & Campbell, 2001; Theimann et al., 2001), the use of these techniques has 
traditionally been limited due to computational difficulties. The advent of Markov 
Chain Monte Carlo (MCMC) methods has helped address some of these computational 
difficulties. MCMC schemes explore the posterior distribution by generating a random 
process where the stationary distribution is the posterior distribution of the parameters. 
It is no surprise that MCMC methods have been adopted widely in hydrological studies 
in recent years (Romanowicz et al., 1994; Kuczera & Parent, 1998; Bates & Campbell, 
2001; Campbell & Bates, 2001; Marshall et al., 2004). 
 What follows is a brief background on Bayesian methods and MCMC sampling, 
after which a Bayesian basis for model comparison that is computationally viable and 
naturally accounts for model complexity is described. A new rainfall–runoff modelling 
framework, the Hierarchical Mixtures of Experts (HME), is presented next, and applied 
to simulate daily streamflow in selected Australian catchments of varying attributes. 
We conclude our discussion with a summary of the main points raised and suggestions 
on how the proposed HME rainfall–runoff modelling framework can be used for 
predictions in ungauged basins. 
 
BAYESIAN METHODS AND MCMC SAMPLING 
Bayesian methods provide a framework within which pre-existing knowledge about the 
parameters of a model can be combined with observed data and the model output. This 
results in a probability distribution on the parameter space (called the posterior 
distribution), that summarizes the uncertainty in the parameters ascertained based on 
the combination of pre-existing (or prior) knowledge and the sampled data values. The 
complications and uncertainties in accurately determining the parameters in conceptual 
rainfall–runoff models have led to the development of schemes for assessment of 
parameter uncertainty in a Bayesian framework. 
 Let the observed flow for a catchment at time t be Qt. A rainfall–runoff model can 
then be cast as: 
 ttt xfQ ε+θ= );(           (1) 

where f(xt;θ) is the corresponding model output for time t, xt is the set of model inputs 
at time t (such as rainfall and evapotranspiration), θ is the set of unknown parameter 
values and εt is an error term.  
 Prior to considering the observed data, the current knowledge about the parameter 
set is summarized in a distribution p(θ) (called the prior distribution). The decision to 
use a particular prior should be based on any available knowledge about the parameter. 
This may include comparing the function of the parameter within the model to the 
function of similar parameters within established models. Estimated optimum values of 
parameters from previous studies may be helpful for establishing the prior, and 
constraints on the model parameters should also be taken into account. 
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 The posterior distribution P(θ | Q) of the parameter set may be found through the 
application of Bayes’ theorem: 
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where P(θ | Q) is the likelihood function summarizing the model for the data given the 
parameters and P(Q) is a proportionality constant. The posterior distribution assumes a 
shape similar to the prior when available data are limited. For large sample sizes, on 
the other hand, the posterior is influenced more by the data than by the assumed prior 
distribution. One of the reasons Bayesian methods are so attractive for use in 
hydrological settings is that they can incorporate prior “expert” knowledge through the 
assumed prior distribution, which is then combined with actual data to lead us to the 
final posterior distribution.  
 Consider, for instance, the prior and posterior distribution in Fig. 23.1 for the 
parameter K (representing the baseflow recession rate) of the Australian Water Balance 
Model (Boughton, 2004), using 11 years of daily runoff data from the 52 km2 Bass 
River catchment in Australia. Note that the posterior distribution converges to a range 
that has a relatively low prior probability of occurrence, again highlighting the 
usefulness of Bayesian techniques in allowing observed information to control the end 
results even if prior knowledge indicates otherwise. Note also that the same would not 
have been the result were the sample significantly shorter than the 11 years of data 
used. A posterior distribution not overly different to the prior would have been the 
likely outcome as the information in the data would not have been sufficient to 
influence the information contained in the assumed prior distribution. 
 While the conceptual elegance of the Bayesian framework is undeniable, the 
computational effort required to implement Bayesian procedures has hindered their 
application. This effort is often due to the difficulty in evaluating moments and other 
statistics of interest from the posterior distribution in equation (2), which is a multi- 
dimensional function expressed in terms of the unknown model parameters θ, and can  
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Fig. 23.1 Posterior distribution and prior distribution for the K parameter of the 
Australian Water Balance Model. 
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assume a form that is not always easy to integrate. Markov Chain Monte Carlo 
(MCMC) sampling is a relatively recent addition to the Bayesian statistical literature 
and provides a simple and elegant way around the computational difficulties noted 
above. The aim of MCMC sampling is to generate samples of the parameter values 
from the posterior distribution by simulating a random process that has the posterior 
distribution as its stationary distribution. While there exist many different MCMC 
sampling algorithms, the general form of commonly used algorithms is as follows: 
1. Start the simulation at time t = 0 with an arbitrarily chosen initial parameter vector 

θ = θ0. 
2. (a)  Generate a proposed value θ* for θ from a proposal distribution depending on 

the current value θt of θ. 
 (b)  Compute an acceptance probability α that controls whether the proposed value 

θ* is accepted or not.  
 (c)  Accept θt+1 = θ* with probability α. Otherwise θt+1 = θt. 
3. Increment time t and repeat step 2.   
 The traditionally difficult step of evaluating moments and other statistics from the 
posterior distribution becomes relatively simple once a trace of sampled parameter 
values has been generated. However, using sampled parameter traces for statistical 
evaluation assumes that the traces are representative of the estimated posterior 
distribution, and that for a given starting value θ0 for the model parameters and 
proposal distribution, the sequence θt has converged to its stationary distribution over 
the length of the simulation. Typically, a “burn-in” period of initial iterates of the 
sequence θt must be discarded where values are influenced by the initial value θ0 and 
are not typical of the posterior distribution. Deciding on the length of the burn-in 
sequence is one difficult issue in implementation of an MCMC scheme. The choice of 
proposal is also crucial in obtaining a good MCMC algorithm. If only very small 
changes are proposed to the current state, then exploration of the posterior distribution 
can be very slow. On the other hand, if very large changes are proposed to the current 
parameter values this may result in values inconsistent with the posterior distribution, 
resulting in turn in a low acceptance rate for proposals and once again slow exploration 
of the posterior distribution. The problem of choosing good proposal distributions 
becomes even more difficult in the situation where two or more of the parameters are 
highly interdependent. Readers are referred to Gelman et al. (1995) and Gilks et al. 
(1996) for more detailed discussion of the issues involved in devising good MCMC 
sampling algorithms. 
 
Adaptive Metropolis and associated advantages 
The Adaptive Metropolis (AM) algorithm (Haario et al., 2001) is a variation on the 
conventional MCMC algorithm outlined above. It is designed to avoid the necessity of 
specifying the proposal density, instead adopting an approach where the proposal is 
assumed to be a multivariate normal with a covariance that is estimated based on the 
sampled parameter values. Hence, at time t the proposal is specified with mean given 
by the current value, N(θt,Ct) where Ct is the proposal covariance. The covariance Ct 
has a fixed value for the first iterations and is updated after some minimum number t0 
of iterations has elapsed:   
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where C0 is the initial fixed covariance, ε is a small parameter chosen to ensure Ct does 
not become singular; and sd is a scaling parameter to ensure reasonable acceptance 
rates of the proposed states. As a basic guideline, Haario et al. (2001) suggest choosing 
sd for a model of dimension d as (2.4)2/d. 
 The calculation of the proposal covariance requires the definition of an arbitrary 
initial covariance, C0. To automate the process, the initial covariance is set at the 
covariance of the parameters under their prior distributions. The steps involved in 
implementing the AM algorithm then become: 
1. Initialize t = 0 and set C0, the covariance matrix for the parameters under the prior 

distributions. 
2. (a)  Select Ct for the current iteration number t using equation (3). 
 (b)  Generate a proposed value θ* for θ where θ*~N (θt, Ct). 
 (c)  Calculate the acceptance probability, α, of the proposed value: 
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        where p(y | θ) is the likelihood function, p(θ) is the prior distribution of θ. 
 (d)  Generate u ~ U[0,1] 
 (e)  If u < α, accept θt+1 = θ*, otherwise set θt+1 = θt. 
3. Repeat step 2. 
 For parameter values that were proposed outside the parameter constraints, the 
acceptance probability is set to zero. 
 A major advantage of the AM approach is that the entire parameter set is updated 
simultaneously. This reduces computation time and complexity, and is especially of 
use when the parameters are highly interdependent. This is in contrast to most classical 
algorithms where separate proposal distributions need to be specified for each sampled 
parameter, the complexity of this specification increasing when the parameters are 
sampled as a block. Marshall et al. (2004) compares the performance of the Adaptive 
Metropolis algorithm in the context of rainfall–runoff modelling, with other sampling 
algorithms used routinely in hydrology, and find that the Adaptive Metropolis 
algorithm offers significant advantages over the others in speed and in the ease with 
which it can be implemented. Readers are referred to Marshall et al. (2004) for further 
details, limitations, and suggestions for use with high dimensional models. 
 
BAYESIAN MODEL SELECTION 
The Bayesian approach to model selection explicitly describes the issues of model 
uncertainty by describing parameter and model uncertainty in a probabilistic sense. In 
comparing two models, the traditional approach requires calculation of the Bayes 
factor, which represents the odds of one model versus the other after observing the data 
assuming equal prior model probabilities. Say we wish to choose a model from the set 
of models M = {M1,… Mn}, given data y for implementing the model. Let p(Mi) be the 
prior probability of model Mi, and θi be the set of uncertain model parameters corres-
ponding to model Mi. The traditional approach to Bayesian model selection proceeds 
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by pair-wise comparison of the models through their posterior probability ratio:  
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where P(Mi | y) is the posterior probability of model Mi, P(Mi) is the prior probability of 
model Mi, and m(y | Mi) is the model’s marginal likelihood. The second term on the 
right hand side of equation (5) is known as the Bayes factor. The marginal likelihood 
m(y | Mi) is defined through the integral: 

 θθθ= � d)|(),|()|( iiiii MpMyfMym  (6) 

over the parameter space, which must usually be estimated numerically. The difficulty 
in estimating the marginal likelihood in (6) lies in the fact that the integration of the 
likelihood function is performed over the assumed prior distribution and not the 
posterior distribution. Were that not the case, the integral could have been approxim-
ated as an average of the likelihood values sampled via the MCMC runs. To get around 
this difficulty, Chib & Jeliazkov (2001) proposed an approximation which involves 
first identifying the parameter set that maximizes the posterior distribution, then using 
the local probability density about this optimal set as the basis for approximating the 
value of the marginal likelihood. Readers are referred to Marshall et al. (2005) for 
details on the approach and an illustration of how the method is a more stable and 
suitable choice for a generic model comparison problem.  
 There are other Bayesian approaches which analytically approximate the marginal 
likelihood. The BIC criterion of Schwarz (1978) is an asymptotic approximation to the 
Bayes factor. The criterion holds that the model log-marginal likelihood is approxi-
mately –0.5 BIC, where (if N is the size of the sample): 
 BIC = –2(log maximized likelihood) + (log N)(number of parameters)  (7) 
The BIC and other associated approximations have the distinct advantage of simplicity 
over the Bayes factor, since they do not require numerical methods for approximating 
the integral in the marginal likelihood. In cases where the prior information is small 
relative to the information provided by the data, the BIC can yield results consistent 
with estimating the Bayes factor (Kass & Raftery, 1995). The BIC also accounts for 
overfitting by tending to favour simple models, as the criterion penalizes according to 
the number of parameters in a model. However, there are inherent risks in using the 
BIC alone. The method requires some regularity conditions on the model and can differ 
from the use of Bayes factors if the available data are limited. An application of the 
marginal likelihood, the BIC, and the commonly used Nash-Sutcliffe coefficient of 
efficiency for comparing across alternate modelling configurations in both synthetic 
and real settings is presented in Marshall et al. (2004). Results confirm the inadequacy 
of the Nash-Sutcliffe coefficient to select simpler models if a more complex alternative 
exists, and the efficiency of both the marginal likelihood and the BIC in overcoming 
this limitation. For this reason the BIC is used as the basis for the model comparison in 
the results presented in the next section. Note that while explicit computation of the 
Bayes factor has not been performed in the results that follow, if each candidate model 
is assumed to have an equal prior probability of selection, the Bayes factor can be 

computed as the ratio 
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estimates for models 1 and 2. It should also be noted that if expert knowledge favours 
one model over another, the above ratio should be multiplied with the ratio of the 
respective model prior probabilities to arrive at a more meaningful estimate of the 
Bayes factor. 
 
HIERARCHICAL MIXTURES OF EXPERTS 
A Hierarchical Mixtures of Experts (HME) model (Jordan & Jacobs, 1994; Peng et al., 
1996) aims to combine the output from two or more models in a probabilistic sense. 
Consider the single-level, two-component HME in Fig. 23.2. Incident rainfall, 
evapotranspiration (ET) and the parameters that describe the framework serve as inputs 
to each HME component model (denoted Models 1 and 2 in Fig. 23.2). The output 
from each HME component model is an ensemble of streamflow hydrographs that aims 
to represent the uncertainty in the parameters used. As each HME component model 
could be any suitable rainfall–runoff model, rigidity in the model structure limits 
representation of the varied flow mechanisms present. This is addressed by combining 
the HME component outputs in a probabilistic sense using a gating function (often 
specified to be a logistic regression model) that estimates the probability with which 
each component model may be used. If, say, this probability equals 0.3 for component 
1 for a given time step, 30% of the ensemble of HME hydrographs would originate 
from HME component 1, and the remaining 70% from HME component 2. This 
probability would depend on the state of the predictors used in formulating the gating 
function, and would change from one time step to the next. 
 Estimating the probability of selecting each HME component model is central to 
the effectiveness of the proposed HME framework. An intuitive choice for the 
predictors used to estimate this probability is the antecedent soil moisture state, the 
time of the year, or a combination of the two. This choice, however, needs to be made 
through an elaborate comparison that considers the various mechanisms that result in a 
“switch” in the flow generation process. Use of a model comparison approach such as 
the Bayes factor provides a sensible basis for deciding the predictors to be used. 
 Specifying the form of the gating function to be used is the other important aspect 
of developing an effective HME model. A simplistic choice for the gating function is a 
logistic function, but more complex choices involving nonlinear or nonparametric 
functional terms (such as a Generalised Additive Model, GAM; Hastie et al., 2001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  
Model Outputs: Streamflow + Uncertainty 

 Model Inputs: Rainfall + ET + parameters 

Model 1 Model 2

Gating 
function 
Fig. 23.2 A single-level two-component Hierarchical Mixture of Experts model.
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offer greater functionality. An exhaustive model comparison should be performed in 
order to identify the appropriate gating function. The use of Bayes factors as the basis 
for this comparison is again recommended.  
 
Application of 2-component HME for rainfall–runoff modelling 
A single-level 2-component HME, similar to that in Fig. 23.2, was applied to simulate 
daily streamflow from 10 catchments of varying sizes and attributes, selected from 
different parts of Australia. Table 23.1 provides details on the rainfall–runoff data for 
each of the 10 catchments (Peel et al., 2001), referred to as catchments A–J for brevity 
in the rest of this document. For simplicity, the two component models were both 
specified to be the reduced three-parameter Australian Water Balance Model (AWBM; 
Boughton, 2004), a conceptual rainfall–runoff model consisting of three inter-
connected surface stores. The AWBM has been used widely to simulate daily runoff in 
Australia, using daily rainfall and daily evapotranspiration as the two hydrological 
inputs. For the purpose of this presentation, a simplified version of the AWBM was 
used (Fig. 23.3) (Boughton, 2004), the end model needing the specification of only 
three parameters (K, BFI and S in Fig. 23.3) that are calibrated using daily rainfall–
runoff records. The “switch” from one component to the other was accomplished 
through a simplified gating function, a fixed transition probability that depends on the 
model state at the previous time step. The performance of the model is documented in 
the last two columns of Table 23.1. It is easy to observe the advantages in using the 
HME formulation in comparison to the use of a single AWBM. One should note 
specifically the improvements in terms of the BIC, the Bayesian measure of model 
performance that accounts for the added complexity in the HME configuration. These 
results are all the more encouraging given the considerable simplification used in the 
experiment design (a naïve predictor variable choice, a transition probability based 
gating function, and the three-parameter AWBM as the HME component model). 
 The optimal parameter values for both the AWBM and the HME, along with a 
segment of the observed and modelled hydrographs for catchment J are presented in 
Table 23.2 and Fig. 23.4, respectively. Note that the dominant component (conditional 
probability greater than 0.5) is indicated as M1 or M2 in the HME results. Note care 
 
Table 23.1 Application of AWBM and HME to selected catchments. Under location: (xx–C) 
denotes coastal; MDB denoted Murray-Darling basin. Catchment J results are presented in detail 
later. Refer to Peel et al. (2001) for additional details on the data used.   

 AWBM: HME:  
 

Station 
number 

Location Area 
(km2) 

Annual 
rainfall 
(mm) 

Annual 
runoff 
(mm) 

Nash 
coeff. 

BIC Nash 
coeff. 

BIC 

A 117002 Qld (NE-C)   260 1195   311 0.74     -495 0.78 239 
B 136202 Qld (NE-C)   640   898     84 0.58    1345 0.67 2332 
C 204025 NSW (SE-C)   135 1793   755 0.81   -2273 0.83 -1808 
D 410033 NSW (MDB) 1891   882   134 0.41   -4677 0.64 2290 
E 239519 SA (Gulf) 1130   607     26 0.51    9277 0.67 12173 
F 410730 ACT (MDB)   148 1139   318 0.66   -6825 0.73 -3687 
G 601001 WA (SW-C) 1610   390       3 0.52  19941 0.59 20723 
H 8210007 NT (N-C)   260 1357   409 0.76   -3033 0.80 -2338 
I 314207 TAS   500 1775 1014 0.81 -14881 0.82  -14496 
J 205014 NSW(SE-C)     51 2036 1114 0.79   -3751 0.81 -3379 
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 Fig. 23.3 A simplified AWBM with three parameters: S (surface store capacity), 
K (recession) and BFI (base-flow index). Note that the surface storage S consists of 
three sub-stores whose sizes are expressed as functions of S. 
timal parameter values for AWBM and HME models for catchment J. 

 HME  HME   
 Component 1 Component 2 
S K BFI S K BFI S 

 64 0.97 0.71 53 0.96 0.44 79 

lications of the parameter values for each HME component state in refer-
WBM structure illustrated in Fig. 23.3. A high BFI (HME component 1) 
 rain gets stored in the baseflow storage, or, a small fraction of the rainfall 

ream as direct runoff. A low BFI (HME component 2) implies the reverse. 
e mechanism that forces each component to become dominant (Fig. 23.4). 
ow” process (HME component 1) generally dominates when a rainfall event  
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Fig. 23.4 Observed and simulated hydrographs for catchment J. M1 and M2 
represent the dominant HME component for each time step. 
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has occurred, while the “quick-flow” process takes over towards the recession limb  
of the hydrograph. While these results are based on simplistic predictor and gating 
function choices, they do illustrate clearly that there exist two distinct states in the 
HME model.  
 While the above results pertain to a single catchment, the analysis was conducted 
for a total of 10 Australian catchments, all representing varying climatic, topographic 
and hydrological regimes. It was notable that in all the catchments analysed, the two 
dominant states corresponded to the “quick-flow” and “slow-flow” mechanisms that 
were noticed in the detailed results for catchment J in Table 23.2. Hence the differences 
were not related to the dissimilarity in the two states, but the residence times and the 
overall probability with which each state existed. This brings us to the next question: 
How should such a multiple-state HME modelling framework be used for prediction in 
ungauged basins? 
 
IMPLICATIONS FOR PUB 
The HME results in Tables 23.1 and 23.2 suggest that there are two distinct states in 
the flow mechanism. The application across a range of catchments indicated that these 
states correspond to a slow-flow and a quick-flow mechanism in each of the catchments 
investigated. The main difference across the catchments appeared to be the transition or 
the switching mechanism between the two states, with differences in both the residence 
time for each state, and the frequency with which a state might be selected. As a two-
component HME requires more than twice the number of parameters compared to 
either component model, a traditional regionalization of the parameters for use in 
ungauged catchments is both onerous and unstable. Hence extension of the HME 
framework through a traditional regionalization approach (such as a Bayesian regional-
ization approach by Campbell & Bates, 2001) is not an attractive option to pursue. 
 Our suggestion for extending the HME framework to PUB works off the 
assumption that a probabilistic combination of a finite number of HME component 
models is sufficient to represent the runoff response across a variety of catchments. In 
other words, we assume that, instead of changing model parameters from one 
catchment to another, one can change the switching mechanism or the gating function 
that specifies the transition probability with which each component model is to be used 
at a given time step. Based on the results presented in Table 23.1, we hypothesize that 
the parameters of the HME gating function vary from catchment to catchment, while 
the parameters of each HME component are reasonably stable (or can be expressed as 
functions of bulk catchment attributes in a reasonable stable manner). Consequently, 
we feel that if the HME framework were to be extended to ungauged catchments, 
regionalization of only the HME gating function would be necessary.  
 It must be noted that, depending on the HME component model used, the model 
parameters may need to be specified in terms of specific catchment attributes (such as 
the catchment area). While this is a form of regionalization, we expect this to be 
accomplished more through the physics rather than statistics. It must also be noted that 
the two-component HME illustrated in Fig. 23.2 and used in developing the results for 
our presentation, is likely to be insufficient at representing the various hydrological 
mechanisms that need to be simulated. The optimal number of components and levels 
(layers) (if needed) of the HME would need to be ascertained through elaborate 
comparisons using a rationale such as the Bayes factor. 
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CONCLUSIONS 
Two frequent applications in hydrology are design flood estimation and water 
resources management. The vast majority of catchments where these are needed are 
ungauged. Hence prediction in ungauged catchments is amongst the more significant 
needs of applied hydrology, and an area that requires major advances to bridge the 
limitations of current methods. The two most strident criticisms of existing alternatives 
for PUB are:  
– the requirement that a single model be used across the many catchments it is 

intended for use in, and  
– that the parameter regionalization be appropriate, or, the catchment attributes 

selected to formulate the regionalization model be capable at representing the 
variability in model parameters across a range of catchments.  

In addition to these issues, a generic criticism of most rainfall–runoff models is the 
limited applicability of the hydrological model across all flow regimes that exist. Such 
regimes could include, for example, both rising and falling limbs of the hydrograph, 
both dry and wet antecedent conditions, or both saturation excess and infiltration 
excess flow mechanisms. It is difficult to find a rainfall–runoff model that can be 
specified to simulate such variability, let alone apply it in catchments based on crude 
relationships to estimate the handful of parameters it involves. 
 The Bayesian hierarchical approach presented in earlier sections aims to do away 
with the following two assumptions implicit in traditional alternatives for PUB:  
(i) using a single model that is applicable through all states of the flow regime, and  
(ii) ensuring that the same model applies across all catchments it is intended for use 

in.  
The use of a “switching” mechanism whereby the model is specified to exist in more 
states than one, enables applications across a range of catchment antecedent conditions. 
The use of multiple component models representing each hydrological state, and the 
reduced need for regionalization of the resulting parameters, ensures that varied 
rainfall–runoff models may be used as the HME components, as long as the main 
hydrological mechanism simulated through that component is appropriately 
represented. While it is possible that some of the parameters that describe each HME 
component model may need some level of regionalization, we feel the focus of the 
regionalization will be confined to the HME gating function that specifies the 
probabilities and residence times associated with each HME component. Hence it will 
be possible to apply the HME framework to an ungauged catchment by specifying the 
form of the HME gating function through the regionalized relationships, and then 
simulating the streamflow as an ensemble of hydrographs proportionally simulated 
from each HME component model depending on the transition probability estimated at 
each time step.  
 It should be mentioned that the specification of the HME model outlined above is 
accomplished because of the flexibility that the Bayesian framework offers. Bayesian 
methods provide us with a simple basis for sampling plausible parameter values and 
establishing the associated posterior distributions. Consequently, they enable an 
effective basis for establishing the confidence limits associated with model outputs, 
and enable also a thorough basis for comparing across alternate models based on their 
respective predictive performances. While Bayesian methods were difficult to 



310    PUB: International Perspectives on the State of the Art and Pathways Forward   

implement without developing exacting analytical solutions, the advent of Markov 
Chain Monte Carlo (MCMC) sampling has simplified their applicability considerably. 
A recent study by Marshall et al. (2004) presents the basis for MCMC sampling and a 
comparison between alternate sampling strategies, their pros and cons, and an 
assessment of their applicability when used in the context of rainfall–runoff modelling. 
 It should also be mentioned that while Bayesian methods are becoming 
increasingly popular as a tool to use to investigate parameter and model uncertainty, 
their use requires assuming the nature of the error distribution that the model produces. 
This error distribution is the basis for the likelihood function the posterior probability 
distributions are derived from. Characterization of the error is both important and 
imperative at the successful specification of the model. The common approach to 
formulating the likelihood is to assume model errors as independent and normally 
distributed. There are two problems in this. Firstly, model errors are seldom 
independent with high serial correlations due to consistent over/under estimation of the 
falling limb of the hydrograph. Secondly, resulting parameters are often suboptimal for 
the applications (flood estimation, simulation for water management) the model is to be 
used for. While there are alternatives which take into account the serial correlation in 
residuals (Bates & Campbell, 2001) or consider multiplicative errors in the rainfall 
inputs (Kavetski et al., 2002), they require estimation of more parameters needed to 
represent the additional characteristics of interest. A multi-objective formulation using 
Bayesian loss functions, such as proposed by Vrugt et al. (2003) or Madsen (2003), 
enables consideration of the multiple criterion that denote a model’s goodness of fit. 
While there is the difficulty of establishing the relative importance associated with each 
of the criteria considered, these functions are recommended as the model likelihood in 
both parameter assessment or model comparison applications. 
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