
 

 

24 PUB as Robust State Estimation  
 JOHN P. NORTON 

INTRODUCTION 
This chapter takes a look at prediction in ungauged basins (PUB) from the perspective 
of state estimation. There are several potential advantages in stepping back and 
viewing PUB in the first instance as a state-estimation problem. State estimation is 
based on versatile state-space models and, in its original form as Kalman filtering 
(Jazwinski, 1970; Gelb, 1974; Grewal & Andrews, 1993), its aim, to make the 
estimation errors orthogonal to (i.e. uncorrelated with) the estimates, makes sense in 
most circumstances1. The versatility of the model form and the broad appeal of the aim 
make the Kalman filter widely applicable, and it has succeeded in fields very different 
from aerospace engineering, its original home. In 40 years of diverse applications, a 
good understanding has grown up of the difficulties facing it and much effort has gone 
into techniques for dealing with them. Over the past decade, the potential scope of state 
estimation has been greatly extended by progress in two areas: optimization-based 
robust state estimation for use when the model is subject to uncertainties, clearly 
relevant to PUB, and Monte Carlo techniques to deal with nonlinear systems and 
arbitrary error distributions. The exercise of trying to put PUB into the framework of 
state estimation should throw light on its particular difficulties. More specifically, 
comparison with established state-estimation problem formulations should help focus 
on the choice of model structure and performance criterion for prediction. 
 The connection between PUB and state estimation is that they both concern the 
internal variables of a system. Flow is predicted from rainfall and other climatic inputs 
by use of some sort of model of the basin dynamics. The model describes, implicitly or 
explicitly, how the inputs affect variables (storages and flows) within the basin, 
including the flow to be predicted. The state-estimation problem is precisely to 
estimate the current values of the essential internal variables of a system, and thence 
the outputs. The test of whether the internal variables comprising the state are essential 
is that the future state, and hence outputs, can be predicted solely from knowledge of 
the present state and the future forcing inputs. In other words, at any point in time the 

 
1 The Kalman filter can also be interpreted in several less general ways, sometimes requiring restrictive 
assumptions. For instance, it is often quoted as producing the maximum-likelihood estimate, assuming that 
the initial state error, unknown forcing and observation error are all Gaussian. As well as being 
unnecessarily specialized, this interpretation has the unappealing aspect that maximum-likelihood estimates 
are not generally unbiased in finite samples. Kalman’s original derivation, making the errors orthogonal to 
the estimates, makes no such assumptions. Nor does the interpretation that the filter produces the minimum-
covariance estimate among all linear, unbiased estimates. This last interpretation implies that the estimates 
minimize (among linear, unbiased estimates) the variance of any linear function of state, including any 
individual state variable. 
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state variables are the means by which the history of the system affects its future 
behaviour. Starting from the current state, prediction is no more than substitution of the 
future inputs into the state-space model. 
 Of course, prediction could make use of an input–output model (e.g. a unit hydro-
graph) without reference to state variables. The advantages of bringing in state 
variables are that:  
(a) differences between the gauged and ungauged basins may be easier to assess in 

terms of their state variables than their outputs alone. The reason for thinking so is 
that state-space models disaggregate input–output relations into contributions 
which have some physical significance, and which should be easier than the 
overall input–output relations to relate to known physical differences between 
basins; 

(b) when ungauged flow is to be predicted from an actual climatic sequence, estimates 
of the state of a gauged basin, using flow observations, may be combined with 
known differences in climatic inputs and state behaviour between the basins to 
give estimates of the ungauged basin’s state and hence output. How the state of the 
ungauged basin might be linked to state estimates in a gauged basin is discussed 
here. 

State estimators assume that the model configuration is as in Fig. 24.1. They produce 
an updated state estimate each time a new observation of one or more outputs, subject 
to error, is received. The updated estimate is the result of correcting the predicted state 
value according to how well it predicted the newly observed output. The size of the 
correction depends on the relative uncertainties in the predicted state and the 
observation. State estimators require:  
– a model of the dynamics, giving state from inputs: the state equation;  
– a model of the instantaneous state-to-output relation: the observation equation; 
– an estimate of the initial state and its uncertainty; 
– known inputs, if any; 
– specifications of the uncertainties in the imprecisely known forcing inputs 

(process noise) and observed outputs (observation noise); and  
– an optimality objective. 
The state-estimation approach is dictated by the form of the uncertainty specification. 
In the Kalman filter, it is in the form of error covariances, assuming that the process 
noise, observation noise and initial state error are zero-mean and white (serially 
uncorrelated). A well established but less widely used alternative is to specify bounds  
 

 
Fig. 24.1 Configuration of state-space model. 
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on the instantaneous values of the noises and initial state error, and compute bounds on 
the state (Schweppe, 1973; Kurzhanski & Valyi, 1994; Norton; 1996; Maksarov & 
Norton, 1996). A third possibility is to specify the probability density functions (PDFs) 
of the noises and initial state error and find the PDF of state by Bayesian estimation 
(Gordon et al., 1993; Doucet et al, 2001); clearly this is much more ambitious. 
 All the items listed above need examination in the context of PUB, but there is one 
glaring discrepancy: standard state estimators assume that the model itself is accurate, 
while PUB faces substantial model uncertainty. The problem posed by PUB is one of 
robust state estimation. Robust state estimation takes account of error in the model and 
in the uncertainty specification. It aims to provide state estimates which remain usable 
over a given range of model uncertainty. The approaches to robust state estimation 
differ in how this aim is formalized and how the uncertainty is prescribed; some of the 
possibilities will be discussed in the following section. Whatever approach is adopted, 
robust state estimation is computationally demanding and only in the past few years 
has it begun to be a practical proposition for realistic problems. Techniques for robust 
state estimation, especially their assumptions and limitations, are reviewed. Then, the 
next section tries to fit the PUB problem into the robust-state-estimation framework, 
and suggests some state-estimation strategies for PUB. Conclusions follow in the final 
section.   
 
APPROACHES TO ROBUST STATE ESTIMATION 
Before getting into details, it is worth noting that although some model uncertainty is 
always present in state-estimation problems, it can often be taken into account without 
explicitly representing the model parameters as uncertain. The simplest tactic is just to 
inflate the process and observation noise covariances to cover error originating in the 
state equation and observation equation, respectively. Common practice is to tune the 
covariances by trial and error to optimize estimation performance. The main effect is to 
alter the balance between the predicted state value from the previous update and the 
new information in the latest observation. Raising the process noise covariance 
reduces trust in the predicted value, while raising the observation noise covariance 
reduces trust in the latest observation. Covariance tuning is hard to defend, since it 
implies, usually wrongly, that the effects of model errors are indistinguishable from 
those of unstructured (white, zero-mean) process and observation noise. Even so, it 
often works quite well so long as the model accounts for the dominant behaviour of the 
system. 
 A more refined strategy allows for structure in the modelling error. The error is 
represented as being produced by passing white noise through a linear dynamical 
submodel, adjoined to the main model. The submodel parameters are added to the 
unknowns being estimated, or suitable values are guessed. Again trial and error may 
help. Application of this idea to PUB can be imagined, developing an auxiliary model 
for prediction-error structure to fit the observed errors in gauged basins, then using it, 
perhaps modified on the basis of basin attributes, for the ungauged basin. 
 If neither of these tricks to allow for model uncertainty is enough, a robust state 
estimator is needed. Robust state estimation has grown up in the control-engineering 
community so, not surprisingly, the main approaches reflect popular control-design 
paradigms. Four options will be discussed: H∞, bounding, guaranteed-cost and Monte 
Carlo Bayesian. 
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H∞ robust state estimation 
Historically, much control-system design has been based on frequency responses. The 
two main requirements of control are accurate following of demanded output changes 
and good regulation of the output in the face of disturbances. Close following of the 
demanded output requires the closed-loop gain from reference input to controlled 
output to be near unity over a sufficient bandwidth to ensure rapid enough response. At 
the same time, disturbances and measurement noise have to be rejected by making the 
gain from where they enter to the output small over as much as possible of their 
bandwidth. In H∞ robust control (Green & Limebeer, 1995; Zhou et al., 1996), this is 
done by minimizing, or keeping below a prescribed value, the H∞ norm from noise to 
output (the highest value, over the frequency range, of the largest singular value of the 
transfer function matrix), over a given range of uncertainty in the plant transfer 
function. The plant uncertainty may be unstructured (e.g. as a maximum deviation of 
the frequency response from its nominal value) or structured (specified ranges for a 
selected set of model parameters). There is a trade-off between performance, poor 
when the control is required to compromise between all sorts of unlikely behaviour 
within the unstructured uncertainty bounds, and computing load, which tends to be 
high if highly structured uncertainty is specified. 
 H∞ robust state estimation is a close cousin of H∞ robust control (Nagpal & 
Khargonekar, 1991; Xie et al., 1991; Li & Fu, 1997; Petersen & Savkin, 1999). The 
aim is to keep the maximum gain from model uncertainty to state error below a given 
level. The gain is the ratio of the “noise” and error energies, so the model uncertainties 
are prescribed by bounds on equivalent process and observation noise energy, rather 
than covariances or any other probabilistic properties. The resulting estimator 
resembles a Kalman filter and is easy to implement. However, it may well perform 
poorly, as it has to provide robustness against modelling errors which are allowed by 
the noise-energy bounds but do not arise in practice. Moreover, filter divergence is 
possible and a condition for the filter to remain stable has to be checked at each update. 
 
Robust state bounding 
State bounding (Schweppe, 1973; Kurzhanski & Valyi, 1994; Norton; 1996; Maksarov & 
Norton, 1996), sometimes called set-membership estimation, is a natural basis for worst-
case control design as it gives the extremes of state consistent with the observations to 
date and specified bounds on the forcing and observation noise. It too has been extended 
to include model uncertainties (Savkin & Petersen, 1995, 1998; Petersen & Savkin, 1999; 
El Ghaoui & Calafiore, 2001; Polak et al., 2004), described by bounds on, e.g. the sum of 
a weighted quadratic function of the initial state error and the sum, over time, of weighted 
quadratic functions of the process and observation noises (Savkin & Petersen, 1995, 1998). 
 State bounding has some advantages. Bounds are easy and direct to interpret, and 
noise bounds are easier to supply, as tentative values, when too little is known for a 
probabilistic specification to be supplied. Bounds on state are clearly appropriate when 
worst-case ranges of state or future output values are of interest. Worst-case predictions 
of the output are readily computed, in principle, from the bounds on state, forcing and 
model uncertainty. Sensitivity assessment is also straightforward, simply loosening or 
tightening bounds on the uncertainty or on the process or observation noise to see the 
effects on the state bounds or output-prediction bounds. 
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 Robust state bounding has drawbacks as well. A limitation is that the bounds on 
state at any instant are usually approximated by an ellipsoid, which is analytically 
convenient and economical to describe but, being convex, may not fit non-convex 
bounds well; non-convex bounds do arise in robust state bounding. Another weakness 
is that approximation of the state bounds at every update may cumulatively make the 
bounds over-conservative, too loose to be useful. Finally, there are technical conditions 
to be satisfied if the filter updates are not to break down. 
 
Guaranteed-cost/minimum-covariance state estimation 
Guaranteed-cost state estimation (Bolzern et al., 1995; Theodor & Shaked, 1996; 
Sayed, 2001) aims to produce estimates with error variance upper-bounded over a 
range of model uncertainty specified by bounds on parameters and noise covariances. 
Filter stability is again an issue, with design parameters to be tuned to ensure stability. 
An appealing procedure to avoid this difficulty, interpretable as regularization, is 
proposed in Sayed (2001). It stems from an interpretation of the Kalman as minimizing 
a cost function which sums quadratic terms, each weighted by the inverse of the 
corresponding covariance (Bryson & Ho, 1975). The terms respectively represent the 
discrepancy between the present state and its value predicted from the previous 
estimate, the output prediction error and the inferred value of the forcing. Robust state 
estimation also can be treated as minimization of the same quadratic function, but now 
of its maximum value over the specified model uncertainty. The technique involves 
optimizing a scalar design parameter, but in practice the value found by a fixed simple 
rule seems satisfactory. 
 
Monte Carlo Bayes state estimation: “particle filtering”  
Kalman filtering relies on linearity of the model to make updating of the state-error 
covariance possible. A nonlinear model may sometimes be successfully linearized for 
state estimation, but the linearization error may cause the computed state-error 
covariance to diverge badly from the actual covariance. As well as giving a misleading 
indication of the estimates’ accuracy, the diverging covariance may even cause the 
estimator to break down. Another limitation of covariance-based state estimators is that 
they do not register important factors such as severe skew in the errors, ambiguity in 
the estimates, or heavy- or light-tailed error distributions, which would be apparent in 
the probability density function (PDF) of the state. These weaknesses have led to 
development of Bayesian estimators. They compute the entire state PDF at each update, 
and derive any desired state or state-dependent estimate from it. The best-known 
example is the conditional mean, which minimizes the mean square error in any linear 
function of the state variables. The state PDF is updated from p(xt-1 | yt-1,yt-2,…,y1) to 
p(xt | yt, yt-1,…,y1) when observation yt is processed, by Bayes’ rule: 
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Here p(xt | xt-1) is found by using the state equation to write the PDF of the process 
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noise in terms of xt and xt-1, and p(yt | xt) by using the observation equation to write the 
observation noise PDF in terms of yt and xt. The denominator on the right-hand side of 
equation (1) does not depend on xt and just serves to scale the state PDF to unity area. 
The big attraction of equations (1) and (2) is that they do not care whether the state and 
observation equation are linear, and are not confined to any particular form for the 
PDFs. Algebraic derivation of the posterior PDF of state from equation (1) is hardly 
ever possible, so numerical solution is necessary. However, the integration over all 
possible xt-1 in equation (2) imposes a heavy load. Recursive Bayesian state estimation 
was considered long ago (Jazwinski, 1970) in the form of the Chapman-Kolmogorov 
equation, but because of the computing load remained impracticable for realistic 
problems. 
 Over the past decade, the increase in computing power has made Monte Carlo 
evaluation of the posterior PDF of state feasible for some non-trivial problems (Gordon 
et al., 1993; Doucet et al., 2001). The idea is simple. First take samples of xt-1 
according to p(xt-1 | yt-1,yt-2,…,y1). For each sample, compute xt by inserting xt-1 and a 
sample of the process noise into the state equation. Next weight each sample by its 
likelihood p(yt | xt), by substituting the observation yt and xt into the expression for the 
observation noise PDF obtained by rewriting the observation equation in terms of 
them. The weighted samples are effectively samples of the numerator of equation (1), 
and thus make up an unnormalized description of the posterior PDF of the state. This 
completes one update cycle, and the next starts by sampling of the state xt according to 
that PDF. The scheme, often given the foolish name “particle filtering”, has been 
widely used in target tracking problems, where the state variables are the position and 
velocity components of the target and where either the state equation or the observation 
equation is nonlinear. It has had considerable refinement (Doucet et al., 2001) to 
maximize computational economy and to avoid problems which arise in naïve 
implementations, notably over-concentration of the re-sampled state onto a small 
number of values. An immediate limitation of the Monte Carlo Bayesian approach for 
robust state estimation is the need to sample, or include in a likelihood calculation, 
every uncertain item. If there are a number of uncertain model parameters, it may well 
not be feasible to propagate a sample set large enough to be representative of all the 
uncertainties simultaneously. 
 
HOW DOES ROBUST STATE ESTIMATION FIT PREDICTION IN  
UNGAUGED BASINS? 
For PUB, the known forcing consists of rainfall and temperature and the unknown 
forcing consists of groundwater flows, unmeasured climatic variables such as humidity 
and wind speed, and the errors in the assumed values of the known inputs. The outputs 
of interest are flows at specified locations, and the state variables are storages. In 
principle there are an infinite number of state and forcing variables, since the values of 
distributed variables are required at an infinite number of points to describe them fully. 
In practice, it is well known that very low-order models suffice for purposes where a 
good deal of spatial and temporal averaging is permissible. For example, an 
IHACRES-type model (Jakeman et al., 1990; Jakeman & Hornberger, 1993) relating 
spatially and temporally aggregated (e.g. daily) rainfall to flow at one location, 
typically has only three state variables indicating soil moisture and the storages of the 
quick and slow flow components. Higher spatial or temporal resolution would 
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necessitate more state variables. The fact that experience shows that useful hydro-
logical models may have very few state variables is highly significant for robust state 
estimation, where computing load typically rises with the cube, or even higher power, 
of the number of state variables. 
 The most obvious non-standard feature of PUB, viewed as a state-estimation 
problem, is that it asks for prediction of an output not directly observed. This could be 
attempted in several ways, discussed in the three following sections. All of them 
assume that an uncertain model for the ungauged basin has been identified by reference 
to gauged basins with topographical, geological, land-use and climatic similarities. The 
model parameter estimates are accompanied by either probabilistic or deterministic 
measures of uncertainty (covariance, joint PDF or bounds). 
 
PUB by running a state-space model for the ungauged basin alone 
As there are no observations directly related to the ungauged output, the model is run 
in simulation mode, driven by estimated climatic and possibly groundwater inputs. 
Even this apparently simple situation raises some questions: 
– Which of the forcing inputs should be treated as uncertain? If they are, are their 

estimates and uncertainties to be provided by a subsidiary state estimator? 
– Should the uncertain model parameters be treated as constant? The answer is far 

from clear. Consider first probabilistically estimated parameters (and their 
uncertainties). Their mean values are valid for average behaviour over the records 
on which they were based, so there is no problem in using the mean values to give 
“best” predictions judged on their average quality over a similar range of 
conditions. However, the best parameter values of an approximate model in the 
short term have to vary as conditions change, since the best local approximation 
by a simple model (e.g. linear, low-order) of a less simple system (e.g. nonlinear 
or higher-order) depends on the operating point. This is one source of parameter 
uncertainty. The conclusion is that fixed parameter values cannot give the best 
predictions as measured in the short term. One can conceive of an auxiliary model 
describing just how the parameter values vary with the conditions, but that is the 
same thing as making the model nonlinear and more elaborate. Condition-
dependent parameter variation could be conservatively allowed for by computing 
the range of predicted output values covered by all parameter histories allowed by 
the computed parameter uncertainty (i.e. within the computed parameter bounds, or 
in a confidence region based on the estimated parameter covariance). Such 
histories will include a wide range of unrealistic parameter variations and will thus 
give very pessimistic results. Accepting that the parameters have to be regarded as 
constant, there remains the problem of computing the predicted-output uncertainty 
due to the parameter (as well as input) uncertainty. Even in a model linear in its 
parameters and variables, the presence of products of uncertain parameters and 
uncertain variables makes the prediction of uncertain outputs by any means other 
than Monte Carlo simulation difficult. This applies equally to uncertainties 
described by covariances and bounds on vectors of parameters or variables. 

– Can the quality of prediction be improved by indirect information about the flow 
output? Examples might be the condition of vegetative cover or farm dams. The 
most obvious is flow elsewhere; this is considered further in the next two sections.  
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 Robust state estimation is relevant here only for the time-update part, where standard 
state estimators do not consider model-parameter uncertainty but robust estimators do. 
 As outlined so far, this scheme could employ an input–output model rather than a 
state–space model. The latter has the advantage that monitoring of the state estimates 
may allow unrealistic behaviour to be detected, or the model to be adjusted, e.g. as soil 
moisture gets very high or very low. 
 
PUB by running state-space models for gauged and ungauged basins in parallel 
The idea here is to benefit from comparison between predicted and observed flow in a 
gauged basin. As each flow observation in the gauged basin is processed, the estimate 
is corrected by the state estimator according to the output-prediction error, and is 
thereby influenced by the effects of model deficiencies and unmeasured inputs as well 
as the error in the previous state estimate and observation noise. Some of the correction 
might reasonably be expected to apply to the ungauged basin too. For example, if the 
basins are adjacent the effects of an untypical rainfall event might be similar, and if 
they have similar topography, the modelling errors due to omitting nonlinearity might 
be partly in common. It has recently been pointed out (Reichert & Borsuk, 2005) that 
the uncertainty in a difference between predictions that share some sources of error 
may be much less than the sum of the uncertainties in the individual predictions. 
 This scheme relies on some science-based and/or empirical modelling of the 
shared characteristics of the output-prediction errors in the gauged and ungauged basins. 
At its crudest, it might be no more than choice of a factor to scale the state corrections 
in the gauged basin. Apart from the state corrections borrowed from the gauged basin, 
the ungauged basin model is run in simulation mode, as in the previous scheme. 
 
PUB by running a combined model for a gauged and an ungauged basin 
A more coordinated scheme is to regard the gauged and ungauged basins as together 
forming a single system, with a single state-space model. One of the system outputs is 
observed but a different one is to be predicted. In the absence of direct interaction 
between the two subsets of state variables, one per basin, the amount of information 
about the ungauged output conveyed by the gauged output depends on the correlation 
between the estimates of the two subsets. For a linear model, a single observed output 
yt at sampling instant t is related to the state xt by: 

 tt
T
tt vy += xh          (3) 

where superscript T denotes transpose, vt is the zero-mean observation noise, of 
variance 2

vσ , and uncertainty in ht is ignored for simplicity. The Kalman filter 
correction equation is: 
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where Pt|t is the estimated covariance of the state estimate tt|x̂  and 1|ˆ −ttx  is the state 
estimate predicted from instant t – 1 using the state equation. The correction to state 
variable i induced by the prediction error in yt is proportional to (row i of Pt|t)ht. Thus, 
if a flow which is also a state variable is observed, the correction to state variable i 
depends only on that state variable, say state variable j, and the correlation pij between 
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them. With no direct physical interaction (e.g. through groundwater or because they are 
at points on the same stream), they are mutually correlated as a result of being affected 
by correlated inputs (true for adjacent basins) and persistence of any initial correlation. 
One mechanism for ensuring that mutual correlation is properly registered by the 
model would be to constrain suitable elements of the state-estimate covariance matrix 
P.|. , perhaps even keeping it constant. This would have to be done on the basis of 
judgement of the strength of similarity between the conditions in the two basins. 
Alternatively, or additionally, the climatic inputs might be represented as having a 
common component and a difference component. 
 
Input prediction 
Another unusual feature is that PUB may involve long-term prediction of flow in 
unknown future climatic conditions, i.e. with the need to predict uncertain input. By 
contrast, in most state-estimation applications either the current state is to be estimated 
(as in state-feedback control systems) or the past state (as in fault and change detection). 
Where prediction is required, it is often as part of a real-time system, with longer-term 
predictions given less weight and soon superseded (as in model predictive control). 
 The model almost universally employed for unknown input in probabilistic state 
estimation is vector white noise, i.e. a collection of wide-sense stationary sequences 
with no autocorrelation, usually mutually uncorrelated. Where the sequences are in fact 
structured, the structure might be modelled by passing the white sequences through 
linear, constant-coefficient filters. This type of model is clearly inadequate for climatic 
variables, so a more refined and specialized stochastic simulation model would have to 
be used. Some state-estimation applications have generated more flexible models; for 
instance, Markov transition matrix models have been used for tracking manoeuvring 
targets, and models switching between modes are common in that application area. 
 For state bounding, the commonest vector input model is a collection of sequences 
bounded instantaneously and either independently (i.e. with box bounds on the vector) 
or jointly (usually by an ellipsoid). For technical convenience, additively combined 
bounds on forcing and the state transition matrix, and on observation noise and the 
observation matrix, have been used (Polak et al., 2004). These models have great 
flexibility as they do not prescribe any distributional properties (apart from the support) 
or time structure. Specifically they do not require whiteness or even stationarity, except 
that the bounds are usually taken to be constant, for simplicity but not essentially. 
Conversely, they embrace a vast range of behaviour, much of it unrealistic. The same 
comments go for bounded observation noise models. A crucial open question is 
therefore: What additional constraints should be applied to models of bounded noise to 
enforce realism in the context of PUB? 
 
Estimator performance criterion for PUB 
Robust state estimators use the state error energy or covariance, the tightness of state 
bounds, or the accuracy, resolution and coverage of the state PDF (in Monte Carlo 
Bayesian estimation) as criteria. To see how well PUB matches a robust state 
estimation technique, its performance criterion must be named. Prediction for manage-
ment purposes might take the accuracy of some integrated single quantity, such as total 
water availability above a nominated flow level over a given period, as its criterion. An 
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integrated output quantity poses no difficulty, being handled simply by making it an 
extra state variable with, e.g. rate of change of measure = flow above level as the 
corresponding extra scalar state equation. Similarly, a criterion such as the proportion 
of the time for which a threshold is exceeded could be handled by an extra state 
variable that increments by one at the end of each sampling interval in which the 
threshold is exceeded. The rate of change switches between zero and one as the 
threshold is passed. However, a sharp nonlinearity as imposed by a flow threshold 
makes it difficult to relate, analytically, uncertainty in the nonlinearity input to 
uncertainty in the nonlinearity output.      
 Any more synoptic criterion might or might not make analysis difficult. For 
instance, if the primary aim of management is to avoid unacceptable extremes of flow 
behaviour, the worst-case-optimal nature of most robust state-estimation schemes fits 
well. As another example, the joint acceptability of the behaviour of a number of state 
variables (e.g. flows at a number of locations) might be expressed as a quadratic 
function of their deviations from desirable values. A case where choice of an 
estimation performance criterion could be difficult is where multiple considerations 
affect the choice between two or more alternative flow scenarios. 
 
HOW DO EXISTING STATE ESTIMATORS MATCH UP TO THE NEEDS OF PUB? 
Some broad conclusions can be drawn from the discussion above. Existing robust state 
estimators can handle: 
– model error lumped with output error and/or uncertain forcing (by any robust 

estimation method); or 
– structured model uncertainty (by bounding but conservatively, by H∞ robust filter-

ing or particle filters at high computational cost); 
– uncertain uncertainty specifications (by guaranteed-cost estimators, particle filters 

or traditional extended simulation trials). 
That said, the prescriptions of uncertainty in existing robust state estimators are largely 
dictated by computational convenience and particularly the need to make optimization 
convex (Polak et al., 2004). A positive development is the widespread use of norm 
bounds as an alternative to hard-to-supply statistical information on uncertainties. The 
flexibility of Monte Carlo Bayesian state estimators is still exploitable only for models 
with low state dimension, but for at least some PUB purposes, low-dimension models 
are enough. 
 Further hydrological modelling, including modelling of uncertainties, and augmen-
tation or modification of existing estimators are needed to handle:  
– output-poor identification: construction of an ungauged basin model according to 

behaviour of its estimated input, the inputs and outputs of gauged basins, topo-
graphy, land use, geology and perhaps some ungauged-basin variables not directly 
related to flow (such as vegetation and dam conditions); 

– updating of state estimates in an ungauged basin on the basis of observations 
elsewhere;  

and more generally: 
– loosely coupled state-space models for gauged and ungauged basins, sharing some 

forcing and characteristics but with little or no direct interaction; 
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– systematic error in both the model and any indirectly flow-related measurements 
in the ungauged basin; 

– long-term forcing by climatic variables, requiring models more specialized than 
the mainly white-noise-driven and/or Markov transition probability models con-
ventional in state estimation; 

– awkward estimation performance criteria, related to the use of the predictions. 
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