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Abstract Mathematical and numerical models can provide insight into 
sustainability indicators using relevant simulated quantities, which are referred 
to here as predictions. To be useful, many concerns need to be considered. 
Four are discussed here: (a) mathematical and numerical accuracy of the 
model; (b) the accuracy of the data used in model development, (c) the 
information observations provide to aspects of the model important to 
predictions of interest as measured using sensitivity analysis; and (d) the 
existence of plausible alternative models for a given system. The four issues 
are illustrated using examples from conservative and transport modelling, and 
using conceptual arguments. Results suggest that ignoring these issues can 
produce misleading conclusions. 
Key words  analytical; data analysis; flow; groundwater; models; numerical;  
sensitivity analysis; sustainability; transport; uncertainty 

 
 
INTRODUCTION 
 
Mathematical and numerical models are often used to determine how to manage 
important water resources of natural systems. When sustainability indicators are 
defined, they generally can be represented in these models as predictions, and the 
models can be used to answer useful questions such as: (a) what field measurements 
are most likely to improve the accuracy of predictions? and (b) how uncertain are the 
predictions? Contributions to prediction accuracy and uncertainty include solution 
error and the limited capabilities of numerical models, error and deficiency of data, and 
errors in system conceptual models. Uncertainty can be reduced by improving 
numerical models and using numerical models, data, and conceptual models together. 
For example, using conceptual models to build simulations forces ideas about system 
behaviour that are often vague and possibly wrong, to be clarified and tested 
thoroughly against data. Problems with the numerical methods or constitutive 
relations, however, can obscure test results. This paper present four issues important to 
this process that affect the utility of models in managing resources subject to 
sustainability indicators: (a) a common numerical-methods issue important to 
indicators of solute concentrations; (b) the problem of matching data too closely;  
(c) using a model to evaluate the importance of observations to parameters, parameters 
to predictions, and observations to predictions; and (d) evaluating alternative 
conceptual models. 
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COMMON NUMERICAL-METHODS ISSUE FOR GROUNDWATER 
TRANSPORT SIMULATIONS 
 
A common numerical issue in transport models is numerical dispersion. Mehl & Hill 
(2001) investigated the effects of numerical dispersion in the simulation of conser-
vative transport on parameter estimation. The investigation used results from a two-
dimensional (2-D) laboratory experiment constructed of discrete, randomly distributed, 
homogeneous blocks of five sands. Measured hydraulic conductivities varied over 
more than two orders of magnitude; measured dispersivities varied over more than one 
order of magnitude. The five dispersivity values were not estimated due to insensi-
tivity. The small amounts of numerical dispersion evident in Fig. 1(a) resulted in 
significantly different optimized values of hydraulic conductivity and the different 
breakthrough curves shown in Fig. 1(b). Slightly better fits were achieved for the 
methods with more numerical dispersion, suggesting that the measured dispersivities 
are consistently too small. Basically, the estimated hydraulic conductivities are making 
up for the bias in the measured dispersivities, and methods with larger numerical 
dispersion require less adaptation. If the measured dispersivities were more accurate, 
the methods with less numerical dispersion would produce the more accurate results. 
In general, the bias is unknown, and it is advantageous to estimate dispersivity. In 
Mehl & Hill (2001), the insensitivity was addressed by lumping the five dispersivities 
and estimating a single value. 
 
 
THE PROBLEM OF MATCHING DATA TOO CLOSELY 
 
Closer correspondence between simulated and measured values often indicates that the 
model more accurately represents a system. However, when models are calibrated, 
predictive capability can be degraded by fitting measurements too closely, as shown in 
Fig. 2. This can occur when the model is overparameterized and close model fit is 
achieved by fitting the errors in the data.  
 Thorough evaluation of data errors and the possibility of overfitting are critical. 
This is especially true for methods in which many parameters are defined. In these 
situations overfitting generally can be controlled using prior information and smooth-
ness constraints, but the consequences of these methods may not be well understood by 
the modeller. 
 
 
USING A MODEL TO EVALUATE THE IMPORTANCE OF 
OBSERVATIONS TO PARAMETERS, PARAMETERS TO PREDICTIONS, 
AND OBSERVATIONS TO PREDICTIONS 
 
Once a reasonably accurate simulation of a system has been achieved through careful 
model development, calibration, and error evaluation, the simulation can be a valuable 
tool for sensitivity analysis, data assessment, and uncertainty evaluation. Sensitivity and 
data assessment methods can be categorized as identifying: (a) observations that 
dominate model calibration (observations important to parameter values); (b) parameter 
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Fig. 1 Results from Mehl & Hill (2001). For the measured concentration values, 95% 
confidence intervals are shown to reflect expected measurement error. Simulations 
used the finite-difference (FD), modified method of characteristics (MMOC), method 
of characteristics (MOC), and Total Variation Diminishing (TVD) numerical methods 
as coded in MT3DMS (Zheng & Wang, 1998), and a predictor-corrector (P-C) method 
coded for Mehl & Hill (2001). MOC, TVD, and P-C have the least numerical 
dispersion. (a) BTCs using measured hydraulic conductivities and dispersivities match 
measured concentrations poorly. Computation times are listed in brackets and are 
from a Linux workstation, Pentium II 333, 64Mb Ram. (b) BTCs using optimized 
hydraulic conductivities and measured dispersivities. The solution labelled P-C(2) 
uses dispersivity values increased to approximate the numerical dispersion common to 
the FD and MMOC methods of MT3DMS. 

(a) 

(b) 
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Fig. 2 (a) Data with a true linear model. (b) The same data with an overly complex 
model with little predictive capability. (c) Schematic diagram showing the tradeoff 
between model fit to observations and prediction accuracy with an increasing number 
of parameters. 

minate the predictions; and (c) observations that dominate the predicttions. 
, gradient-based methods such as dimensionless and composite scaled 
and parameter correlation coefficients (dss, css, and pcc); predicttion scaled 
the value of improved information, and parameter correlation coefficients 
 pcc); and the observation-prediction statistic (opr) can be used to address 
gories, respectively (Hill, 1998; Hill et al., 2001; Tiedeman et al., 2003, 
 local-sensitivity methods are often useful for nonlinear models, but can 
ss if the nonlinearity is too extreme (Poeter & Hill, 1997; Hill, 1998). More 
lly intensive methods that do not depend on model linearity include 
d global sensitivity analysis methods, which address category (b) above 
l., 2000), and jackknife, bootstrap, and cross-validation methods, which 
ories (a), (b) and (c) (Davison & Hinckley, 1997). 

(b) 

(c) 
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 Figure 3 shows css values investigated by Barth & Hill (2005b). The simulation 
mimics conditions of field experiments conducted by Schijven et al. (1999), and 
includes observations of hydraulic head (which have little sensitivity because the 
system is homogeneous and constant-head boundaries are imposed, as indicated by 
dimensionless scaled sensitivities), flow through the system, normalized first temporal 
moments of conservative-transport concentrations, and virus concentrations. The 
observations provide the most information for the two hydraulic parameters, K and θ. 
Including TSS in Fig. 3 allows evaluation of whether the information provided by the 
observations is sufficient to overcome typical numerical inaccuracies (Barth & Hill, 
2005a). Even with virus concentration observations, the css for λ1 is smaller than for 
TSS, suggesting that estimation of λ1 is likely to be affected by numerical 
inaccuracies. 
 
 

 
Fig. 3 Composite-scaled sensitivities of seven system parameters and the simulation 
transport step size, TSS, evaluated using parameter set A. Observations include 
hydraulic heads, moments of conservative transport, and reactive transport 
concentrations. Composite-scaled sensitivities indicate the amount of information that 
the observations provide. K and θ are the most important parameters; TSS is more 
important than λ1. (from Barth & Hill, 2005b). 

 
 
EVALUATING ALTERNATIVE CONCEPTUAL MODELS 
 
Most naturals systems are not clearly defined by available data. It therefore becomes 
important to consider alternative models that may produce different predictions related 
to the sustainability indicators. The different predictions can be used to quantify 
prediction uncertainty using the methods suggested by a number of authors, including 
Poeter & Anderson (2005). New software called J_MMRI (Multi-Model Ranking and 
Influence) supports such analyses (Poeter et al., 2005). 
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CONCLUSIONS 
 
Model development and evaluation are complex endeavors and predictions are always 
uncertain. To make wise societal decisions based on model predictions, it is important 
(a) for numerical methods to be as accurate as possible, and for any weaknesses to be 
sufficiently understood and accounted for; (b) to judge model fit in the context of a 
thorough evaluation of observation error; and (c) to use solid methods for evaluating 
the importance of observations to parameters, parameters to predictions, and 
observations to predictions. 
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