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Abstract We present PAI-OFF (Process Modelling and Artificial Intelligence 
for Online Flood Forecasting), which combines the reliability of physically 
based, sophisticated modelling with the operational advantages of Artificial 
Neural Networks (ANN). Thus we are able to improve ANN performance in 
the flood forecasting context by detailed process modelling. Low computation 
times and robustness are the key features of ANN models and also form the 
basic requirements for flash flood forecasting. After presenting the theory of 
the new methodology, the results of a catchment related meteorological 
analysis for generating storm scenarios serve as the input to a coupled 
hydrological/hydraulic model, which is set up for a mountainous catchment in 
east Germany. Along these lines we operate the catchment model for all 
realistically possible constellations of flood formation. This results in a 
database consisting of corresponding input/output vectors. We complete the 
database for training the ANN by adding yet more flood relevant data for 
characterizing the hydrological and meteorological catchment situation prior 
to a storm event. After this preparatory step, the ANN is applied for online 
flash flood forecasting in the considered catchment using an “unseen” storm 
event, i.e. one which did not feature in the training process. The convincing 
agreement between the predicted and observed flood hydrograph underlines 
the application potential of the new PAI-OFF methodology for online flood 
forecasting even in smaller catchments.  
Key words  artificial neural networks; flood forecasting; network training 

 
 
INTRODUCTION 
 
Each and every flood event is the direct consequence of complex hydrological 
processes which, in turn, are a result of rainfall characteristics as well as the catchment 
specific topographic and soil hydrological properties (nonlinearity and pronounced 
dynamics are typical features of this phenomenon). Mountainous catchment areas—
with their steep slopes and short flow paths, high nonlinearity and pronounced 
dynamics—restrict the performance of current flood forecasting models and, thus, only 
allow for short warning periods. In order to extend the flood warning period we have 
to take into consideration a quantitative precipitation forecast and a detailed and 
physically based description of the rainfall–runoff process and wave propagation in the 
river. Liu & Todini (2002) do indeed consider the quantitative precipitation forecast in 
their TOPKAPI forecast model; however, the operation requirements unfortunately 
lead to a significant simplification of their modelling concept. Moreover, their 
approach does not include rigorous hydraulic modelling for taking backwater effects 
into account. Barbero et al. (2001) attempt to introduce hydrodynamic numerical 
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modelling for flood forecasting; however, these have the disadvantage of enormous 
computational requirements and their use necessitates considerable experience in 
numerical modelling. Trying to get around the problem, Hsu et al. (2002) compared a 
forecast algorithm on the basis of the ARMA concept (Box-Jenkins, 1976) with ANN 
solutions, for considering only one step ahead forecast strategies. In view of these 
shortcomings a considerable amount of research has been invested for adapting the 
theory of Artificial Neural Networks (ANN) as the basis for flood forecasting. In 
addition to the rather general observations concerning ANN and their role in hydrology 
(ASCE 1 and ASCE 2), Dawson (2001) provides a more specific overview regarding 
ANN and their application with respect to rainfall–runoff modelling. 
 In this context, the attempt made by Sajikumar & Thandaveswara (1999) and also 
Shamseldin (1997), to predict flood waves using solely ANN approaches cannot be 
used for general flood forecasting. The reason being that the training data (observed 
rainfall–runoff hydrographs) never covers the full range of possible flood peaks. ANN, 
due to their empirical character, are not able to provide reliable results where 
extrapolation is required (Minns & Hall, 1996), and therefore fail to extrapolate 
extreme events from historical data alone. Research has also been carried out on the 
various ANN types in view of their respective abilities to predict discharge time series 
(Castellano-Mendez, 2004). These attempts aim to improve the potential forecasting 
performance of ANN by combining different types of ANN with methods of time 
series analysis or fuzzy logic approaches (Nayak et al., 2004; Rajurkar et al., 2004).  
 Unfortunately these strategies are likewise built upon pure empirical approaches 
and, thus, feature the same shortcomings—i.e. they cannot reliably predict a rare 
extreme flood event if it was not part of the training data. Despite significant progress 
in this field during the last few years, none of the currently available hydrological/-
hydraulic models is able to offer a robust and computationally efficient solution to the 
operational flood forecasting problem when taking backwater effects, or even weather 
forecast uncertainties, into account. 
 The new PAI-OFF methodology offers a way out of the dilemma. We overcome 
the ANN deficiencies as regards poor extrapolation capability, by comprehensively 
enlarging the training database for exploiting catchment specific topographic and soil 
hydraulic properties with the help of physically based modelling. 
 
 
THE PAI-OFF METHODOLOGY 
 
ANN are computationally highly efficient tools that can straightforwardly approximate 
any nonlinear function to an arbitrary accuracy; they are, however, a prisoner of their 
training data (Minns & Hall, 1996). In the context of flood forecasting this prohibits 
the direct use of ANN due to the fact that observation (training) data never contain all 
the possible constellations of extreme flood events. Bearing this in mind, PAI-OFF 
employs, in its three preparatory steps (Fig. 1), a physically based catchment model for 
transferring catchment specific information into the ANN. In the first step a rigorous 
catchment model, which consists of a rainfall–runoff as well as of a hydraulic module, 
is set up. This model is calibrated and validated with the available meteorological data 
and the hydrographs at catchment internal points as well as at the catchment outlet 
(Fig. 1 “Physically based catchment modelling”). We then generate all realistically 
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possible rainstorm events based on the KOSTRA study (1997). In the second step, this 
ensemble of rainstorms is the transferred into the catchment response by means of the 
validated catchment model. Thus, a scenario database is established which contains the 
full range of constellations with respect to all locally possible rainstorm events, the 
initial catchment conditions and the corresponding catchment response at the outlet 
(Fig. 1 “Generation of training database”); here catchment internal points are not yet 
included. In a third step of the preparatory phase of PAI-OFF, the ANN is trained to 
reproduce all the input (generated rainstorms) output (catchment model response at 
outlet) relationships. This way the ANN portrays the hydrological/hydraulic model as a 
black box. It represents all the functional relationships of the transformation of rainfall 
to runoff covered by the database; we thus replace the catchment model with the ANN 
core of PAI-OFF.  

 

 
Fig. 1 The PAI-OFF methodology. 
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 The steps involved in the preparatory phase only have to be carried out once for a 
particular catchment area. As soon as the preparatory steps are completed (Fig. 1), 
PAI-OFF can be routinely operated as an efficient tool for flood forecasting, requiring 
the input shown in Fig. 1 and this with negligible computational effort. When the 
forecast is required, all flood relevant information is thus already pre-processed and 
stored in the system. In this respect, PAI-OFF is to be seen as a modern, high 
dimensional equivalent to the Nomogrammes of former times; a tool of the latest 
generation which is even capable of learning by doing. 
 
 
THE HYDROLOGICAL/HYDRAULIC MODELLING 
 
As far as PAI-OFF is concerned, any and all types of reliable hydrological/hydraulic 
models can be employed for portraying the catchment behaviour. After a comparative 
analysis we selected WaSiM-ETH (Gurtz et al., 2000) for the subsequent 
demonstration of the PAI-OFF principle due to its efficient use of the Richards’ 
equation for adequately describing the soil moisture distribution prior to a flood. 
 We use Grass-GIS as a parameterization tool with respect to the parameters of the 
digital elevation model, soil characteristics and type of land use. The meteorological 
parameters, i.e. precipitation, temperature, air humidity, global radiation and wind velo-
city are processed for the model on an hourly basis using a grid of 1 km2. The interpola-
tion with respect to the mesh points employs external drift kriging for temperature and 
precipitation data and ordinary kriging for air humidity, wind and global radiation. 
 The modules for flood routing are based on two different modelling techniques: in 
steep and narrow river reaches we use the translation diffusion approach which is 
included in WaSiM-ETH, and in areas with significant backwater effects as well as in 
the vicinity of river junctions we apply HEC-RAS, a one dimensional hydrodynamic 
model based on the numerical solution of the Saint-Venant equations. 
 For coupling, the results of WaSiM-ETH are used for the upper boundary 
conditions of HEC-RAS. This interface between WaSiM and Hec-Ras always lies 
significantly upstream of the backwater-influenced reaches. Thus, we avoid iterative 
procedures when coupling the hydrological and hydraulic models. On the basis of 
observed data, automatic calibration using the SCE-UA algorithm according to Duan 
et al. (1994) is used to back up the thorough manual calibration of both models. 
 
 
FLOOD RELEVANT METEOROLOGIC/HYDROLOGICAL FEATURES 
PRIOR TO A FLOOD EVENT 
 
For the reliability of a forecast (Fig. 2) it is of crucial importance that all type of flood 
relevant, commonly available data, be taken into consideration by the flood forecasting 
system. In this context, ANN have many advantages: with the aid of a vector of 
characteristic features, relevant information as to the meteorological/hydrological 
behaviour which was in existence prior to the event can easily be transferred into the 
ANN as shown in Fig. 2. Here T represents time series of temperature, R Rainfall, Q 
Runoff and I any other time series that could be of potential interest (e.g. vegetation 
period). 
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Fig. 2 principle of transformation of meteorological input for the ANN. 

 
 
 This feature vector can be formed on the basis of pre-rainfall index (R-series in 
Fig. 2), preceding discharge at relevant gauges (Q-series in Fig. 2) and/or sliding 
means as for e.g. the moving average temperature of the previous 3 days (Fig. 2 T 
series). The selected characteristic features of the vector need to satisfy two basic 
requirements: firstly, they must refer exclusively to data, which is commonly available 
at the flood alarm centre, and secondly they should portray a maximum of information 
relevant for the formation of flood events. This latter aspect also serves to reduce the 
required number of input neurons and, thus, assists in restricting the overall 
dimensions of the ANN. 
 We achieve this goal by adopting the unit hydrograph concept for defining 
selected members of the feature vector. On the basis of this concept we incorporate the 
principle of superposition into the ANN by not predicting the absolute discharge value 
but rather its alteration relative to the preceding model results. 
 Along these lines we also exploit the fact that the discharge alteration ∆Q can be 
derived from a weighted sum of the rainfall within a relatively small time window. 
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While the weights are determined according to the unit hydrograph concept, the time 
window is defined by the prediction interval Tp and the time of concentration Tt, i.e. 
the time needed for the rainfall in the most distant catchment areas to become effective 
as regards the river discharge. 
 The usage of the concentration time also allows subdividing the catchment 
according to the isochrone’s principle so as to be able to work with integrated rainfall 
values for each of the resulting catchment areas. The soil moisture distribution existing 
in the catchment prior to an event can be evaluated by continuously operating a water 
balance model. The PAI-OFF methodology offers a way around this inconvenience by 
providing the option of estimating the catchment conditions on the basis of relevant 
meteorological and hydrological data prior to the event as for e.g. the weighted sum of 
daily and/or weekly precipitation, the minimum discharge values and climate data as 
shown in Fig. 2. 
 
 
TRAINING OF THE ANN 
 
Sets of corresponding input–output data represent the foundation for teaching the ANN 
(Fig. 1). The input vector is formed by the time series of rainfall generated in 
accordance with the local meteorological situation (together with the prevalent 
meteorological/hydrological features in existence prior to the flood). 
 The response of the physically based catchment model, i.e. the discharge hydro-
graph at the reference gauge, defines the corresponding output vector.  
 A successful training requires a sufficiently great number of neurons for an 
optimal representation of the considered process. Likewise, sufficient training data 
needs to assure that all constellations of the rainfall–runoff/flood wave propagation 
phenomena are fully portrayed. The reliability of the ANN’s forecast may significantly 
suffer from a substantial violation of these requirements due to the imperfect training. 
 Keeping this in mind, we subsequently apply a problem adapted learning 
algorithm for training the selected MLFN (Multi Layer Feed Forward Net). After the 
successfully validated training, the next step in the PAI-OFF methodology requires the 
verification of the forecast performance of the trained MLFN. After successful 
validation, i.e. testing the ANN with data which was not featured in the training, the 
preparatory phase is complete. 
 Now, PAI-OFF is ready to be applied as a simple and computationally highly 
efficient and robust tool for online flood forecasting 
 
 
ONLINE FLOOD FORECASTING WITH PAI-OFF 
 
The routine operation of PAI-OFF uses the meteorological data provided by the 
national/regional weather forecast, i.e. quantitative precipitation forecast, data on snow 
melting, temperature, radiation and wind velocity in the available spatial resolution. 
Moreover, PAI-OFF allows exploitation of information from meteorological/hydro-
logical time series, i.e. discharge hydrographs at reference gauges, and the rainfall 
pattern of the previous days/weeks. All this information is generally available at flood 
alarm centres. 
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 Moreover, online data from existing rain and/or river gauges can be used for 
continuously updating the PAI-OFF input data and, thus, will further improve the 
forecast reliability. 
 
 
APPLYING PAI-OFF TO A MOUNTAINOUS CATCHMENT 
 
A catchment in the Ore Mountains (Erzgebirge, east Germany) serves as the basis for a 
first test application of the new methodology. Our investigations focus on the 
Schwarze Pokau River, which is a tributary of the Mulde River, and we use the Zöblitz 
gauge as a reference. The rolling hills of the catchment attain 900 m above m.s.l. The 
land use mainly consists of forest (35%), agricultural land (30%) and the remainder is 
fallow. 
 
 
Catchment modelling 
 
As already outlined, the data provided by the digital elevation model is used in a grid 
format of 1 × 1 km. The model takes into account the transient character of seasonal 
variation with respect to plant growth and its impact on soil water dynamics and 
evapotranspiration. Due to the rapid catchment response to a rainstorm event we use a 
time discretization of 1 h for the flood relevant processes. This refers especially to 
rainfall series, wind velocity, radiation, temperature and air humidity. The soil hydro-
logical parameters were derived from the official soil map of the area (Bük 400) and 
Corine (2000) provided the data for the land use. The considered reach of the Zöblitz 
River is characterized by a steep bottom slope without backwater effects. This leads us 
to employ the translation–diffusion approach for the flood routing in this test case. 
 On the basis of the aforementioned data processing strategy we parameterized the 
rainfall–runoff model. The successful calibration of the catchment model employed 
time series from January 1972 to June 1974 and the subsequent validation referred to 
data from July 1974 to December 1976 (Fig. 3). The excellent result has to be 
emphasized in the light of the fact that the flood peak of the validation flood exceeds 
the maximum flood peak during the calibration period by more than 100% (Fig. 3). 
Here it is worth noting that the RR-modelling which leads to the training database, 
despite its good validation, could be further refined. In this paper we put emphasis on 
the performance of the ANN to reproduce the database, we do not intend to improve 
the structure of the underlying RR model. 
 
 
Meteorological characterization of the catchment location 
 
The quality of the rainfall data in its spatial and temporal resolution is a decisive factor 
for forecast reliability. We therefore analysed the flood relevant rainfall patterns of the 
catchment on the basis of a 40-year time series of meteorological data recorded on an 
hourly basis, courtesy of the German National Weather Service. 
 We firstly employed our catchment model using this data for a continuous 
simulation of the rainfall–runoff dynamics. The results were analysed and allowed for 
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Fig. 3 Example from calibration and validation of the catchment modelling. 

 
 
classification of the rainfall events with respect to the impact of pre-flood catchment 
conditions. In so doing we came upon the potential combinations of pre-flood 
catchment conditions and rainstorm events which initiate flooding. We then used the 
results of the meteorological catchment analysis together with the original data for 
setting up a stochastic rainstorm generator. It provided rainstorm scenarios from given 
rainfall quantities and given storm durations, which correspond to the catchment’s 
typical meteorological behaviour. This means that the parameters of the generated 
rainfall hydrograph portray the local situation with respect to: 
 

(a) the hydrograph shape; 
(b) the hydrograph skewness; 
(c) the drift direction and velocity for advective storm events; 
(d) the location of rainstorm centre and radius for convective events; 
(e) the probabilistic term; 
(f) the overall rainfall intensities of the events were derived from the probable 

maximum precipitation documentation of the area (Kostra-Dwd, 1997). 
 
 
Generation of training data and setting up of the ANN 
 
The stochastic rainstorm generator is now applied to generate 55 locally typical storm 
scenarios. Each of the 55 scenarios is related to a hydrological/meteorological situation 
in existence prior to the event. In Table 1 some of the characteristics of the generated 
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Table 1 Rainstorm characteristics of a real (2002) and 10 of the generated storms. 

 REAL SC_1 SC_2 SC_3 SC_4 SC_5 SC_6 SC_7 SC_8 SC_9 SC_10 
MEAN 3.69 1.15 2.36 2.04 2.39 1.19 1.43 1.19 0.99 1.70 3.86 
MAX 26.26 23.43 5.79 16.05 29.83 28.27 51.06 40.34 28.27 5.55 16.43 
STD 5.21 4.03 2.09 4.33 6.13 4.86 7.87 5.20 4.49 1.72 5.59 
 
 
storms are compared to the 3-day rainstorm event that triggered the 2002 flood (a rare 
event in the order of 150 years) in the observed basin.  
 The spatial distribution of the rainfall was organized using 129 grid cells 
throughout the catchment. According to the procedure outlined in the preceding, we 
now use the isochrone’s principle for defining 4 sub areas where the amount of time 
needed for the rainfall to reach the river is practically the same within a selected 
tolerance limit. Within these sub areas we work with an average rainfall distribution. 
The feature vectors for characterizing the catchment condition were:  
 

(a) a moving average of daily / weekly / monthly rainfall; 
(b) The minimum discharge of the previous months; 
(c) The weighted sum of the previous 10 × hourly rainfall and temperature. 
 

 In order to assure in our first test application the comparability with Dawson & 
Wilby (2001), Garcia-Bartual (2002), Zhang & Govindaraju (2003), all of which 
started their prediction on the basis of measured rainfall, we selected a forecast period 
of 5 h. This corresponds to the overall concentration time of the catchment. If not only 
the prediction of a single discharge after the forecast period is required but also its 
development, the forecast has to be repeated according to the desired resolution of the 
discrete flood hydrograph which is to be predicted. For enlarging the forecast period, 
the meteorological input has simply to be extended in accordance with the 
meteorological forecast data. In both instances no problems arise for the operation of 
PAI-OFF due to its negligible computation time.  
 On the basis of the input scenarios the WaSiM-ETH produces the resulting flood 
hydrograph at the Zöblitz reference gauge. This results in input–output data sets which 
altogether form the training database. A problem adapted learning algorithm supplies 
the ANN with this flood characteristic behaviour of the catchment along with the pre-
event features. Organising the feature vectors, their structure and the generated rainfall 
data in a database allows an efficient organization of several subcatchments in various 
test versions and their straightforward hierarchical arrangement within the global 
catchment. The training of the ANN provided excellent results throughout the training 
period, which is documented in Fig. 4, and shows an arbitrarily selected sample section 
of the complete forecast period. These extremely satisfying training results were 
achieved for all the characteristically different 55 flood events, which formed the full 
training programme. 
 Thus, the overall training of the MLFN demonstrated its astonishing capability for 
portraying the whole range of discharges, i.e. to portray indirectly, on the basis of the 
training database obtained by the hydrological modelling, all flood relevant 
hydrological processes in the catchment. Table 2 gives an idea of some performance 
criteria of both models. The setting up of the validation database is performed 
analogously, i.e. the rainstorm generator provides a second set of realizations of the 
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Fig. 4 Training performance of PAI-OFF, shown for a sample normalized to a  
100-year event. 

 
 
Table 2 Performance criteria of the catchment model and the PAI-OFF core. 

Criteria PAI-OFF core 
training 

PAI-OFF core 
validation 

WaSiM-ETH 
calibration 

WaSiM-ETH 
validation 

Nash-Sutcliff 0.97* 0.95* 0.5–0.85† 0.4–0.8† 
RMSE (peaks) 0.006 0.007 0.047 0.09 
* Overall performance. 
† Based on the validation of single events. 
 
 
stochastic rainfall process. It represents a second pool of rainfall–runoff data, which 
does not form part of the training programme, i.e. the ANN is exposed to this data only 
for the purpose of assessing the forecast reliability of PAI-OFF. 
 Besides this data pool, which only forms one part of the test database, the 
physically based catchment model completes the test. Before confronting the ANN 
with this data pool, it is first used by the catchment model for computing the resulting 
flood hydrograph at the Zöblitz gauge. Together with the storm specific feature vector, 
PAI-OFF now uses the same input data to predict the corresponding flood hydrograph 
as a reference for assessing its prediction performance. Figure 5 illustrates both the 
hydrographs obtained from WaSiM and PAI-OFF. They show a convincing agreement, 
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Fig. 5 PAI-OFF test performance, shown on a sample normalized to a 100-year event. 
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which is also to be seen in the light of the fact that (other than in real life conditions) 
no updating techniques on the basis of online measurements were employed.  
 
 
SUMMARY AND CONCLUSIONS  
 
PAI-OFF (Process Modelling and Artificial Intelligence for Online Flood Forecasting) 
is the new tool for ideally satisfying the most important requirements for flash flood 
forecasting, i.e. low computation times, complete robustness and simple operation 
together with the high predictive reliability of detailed catchment modelling. The first 
part of this contribution explains in detail the consecutive preparatory steps required to 
set up PAI-OFF for a given catchment and provides insight into the theory of the new 
methodology with its different modules. We selected a typical small watershed in the 
Erzgebirge (east Germany) in order to perform a first test application of PAI-OFF. 
After parameterization of a hydrological/hydraulic catchment model, we perform a 
meteorological analysis of the region in order to include as much “core” information as 
possible. The results finally provide storm scenarios that cover all the realistically 
possible meteorological constellations of the catchment area. In a subsequent step, 
these serve as input to the catchment model for generating the resulting flood scenarios 
considering all flood relevant initial catchment conditions. Operating the catchment 
model on the basis of this input data leads to a database of corresponding input/output 
vectors, representing all the realistically possible constellations of flood formation. We 
complete the database for training the ANN by adding yet more flood relevant data for 
characterizing the hydrological and meteorological catchment situation prior to a storm 
event (like flood hydrographs, average rainfall of the last month, week, day, etc.). 
After this preparatory step, PAI-OFF is applied for online flash flood forecasting in the 
considered catchment using an “unseen” storm event, i.e. one that did not feature in the 
training process. The convincing agreement between the predicted and observed flood 
hydrograph underlines the application potential of the new PAI-OFF methodology for 
online flood forecasting even in smaller catchments. The advantages of the method 
presented are:  
 

(a) different types of catchment models can be integrated (e.g. RR and hydraulic 
models); 

(b) different parameter sets are integrated within the ANN model (e.g. runoff 
generation parameters for medium and large flood events); 

(c) the model is extremely fast (several thousands of scenarios can be processed in 
less than a few seconds on a standard PC) which makes online uncertainty analysis 
possible in future applications. 
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