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Abstract Hydrological modelling is subject to a set of well-known limitations, 
though these are rarely explicitly considered through an uncertainty analysis 
related to the results obtained. This work intends to emphasize the role of 
uncertainty analysis due to precipitation fields as applied to watershed flow 
simulation. For this purpose, after explaining the problem in detail, a 
methodology for uncertainty assessment through the Monte Carlo method is 
proposed, based on an estimation method called Generalized Likelihood 
Uncertainty Estimation and on Bayesian kriging. Emphasis is placed on 
precipitation fields and the effects that gauge network simplifications have on 
the output of a rainfall–runoff model. The hydrological model TOPMODEL 
was adopted for this analysis. The impact of uncertainty is evaluated through 
the analysis of the behaviour of the Iguaçu River watershed, located in the 
state of Rio de Janeiro, Brazil. The results reinforce the fact that a poor 
representation of precipitation fields in hydrological models is a considerable 
source of uncertainty. 
Key words  Bayesian kriging; precipitation estimation; rainfall–runoff models;  
uncertainty analysis 

 
 
INTRODUCTION 
 
The way hydrological models, whether conceptual or physically-based, represent 
natural processes at the watershed scale, leads to a considerable amount of uncertainty 
caused by many sources such as data acquisition, calibration issues and imperfect 
mathematical representation of these processes, as discussed by Rotunno (1995) and 
Beven & Freer (2001) among others. It could be said that the very nature of 
hydrological modelling is inherently imperfect, which leads to different levels of 
uncertainty whose magnitude cannot be easily estimated. The vast field in which 
hydrological models play a significant role makes the development of methods to 
estimate these uncertainties a very important task, so that these models can be used 
with a greater degree of confidence. 
 As proposed by Beven & Freer (2001), the Generalized Likelihood Uncertainty 
Estimation (GLUE) methodology offers a simple way to estimate the uncertainty in 
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hydrological model output, by selecting a set of simulators of the watershed response 
that can be accepted as behavioural. The concept of behavioural simulators originates 
in the paradigm of equifinality: due to the inherent difficulties concerning the search of 
an optimal parameter set of a model, it is often only possible to find a number of 
parameter sets which simulate the system behavior equally well according to a 
quantitative measure of goodness of fit that must be defined a priori. 
 This work presents a methodology wherein the GLUE framework was used for the 
estimation of the hydrological model total uncertainty that comes from the 
approximation of a precipitation field from different configurations of a raingauge 
network. Given a number of raingauge measures, the precipitation field can be 
approximated using a geostatistical approach through the Bayesian kriging 
methodology, which combines the point measurements given by raingauges with the 
knowledge of the spatial precipitation structure, which can be estimated with remotely 
sensed images (e.g. radar images). It could be expected that the greater the number of 
these measures, the better the approximation of the real precipitation field would be, 
and thus the less significant the uncertainty contribution caused by the imperfect 
knowledge of the real precipitation field.  
 The framework proposed in this paper is illustrated with a case study which, 
although it uses synthetic rain data, generated by the turning bands method proposed 
by Mantoglou & Wilson (1982), demonstrates that it can be a useful tool to the 
estimation of the uncertainties in hydrological modelling caused by an approximate 
representation of precipitation. This procedure can also be used in the design of a new 
raingauge network, and for the evaluation of an existing one, a process whose main 
criterion should be the estimation of the approximated field such that an acceptable 
degree of uncertainty would be transferred to the model output if hydrological 
predictions are the main objective. 
 
 
GEOSTATISTICS APPLIED TO PRECIPITATON FIELDS 
 
According to Matheron (1962), geostatistics is the application of the formalism of 
random functions to the reconnaissance and estimation of natural phenomena. A natural 
phenomenon can often be characterized by the distribution in space of one or more 
variables, called regionalized variables. 
 The classical estimator of the semivariogram based on sampled data is presented by  
Journel & Huijbregts (1978) as follows: 
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where N(h) is the number of pairs of measurements separated by the distance h, z(xi) 
the  measurement at point xi, and z(xi+h) the measurement at point xi+h. 
 As previously mentioned, this research work intends to pursue the geostatistical 
approach applied to the generation of precipitation fields. Recently developed 
methodologies in the geostatistical research area, such as Bayesian kriging, offer the 
possibility of integrating raingauge data (ground-truth) with structural correlation 
functions in a rigorous manner.  
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 In this section, the Bayesian kriging methodology, introduced by Omre (1987) and 
used for example by Nobre (1992) and by Rotunno (1995), is presented as a new 
approach for fulfilling the objective of this paper, that is, the uncertainty assessment of 
rainfall–runoff models due to errors in precipitation field mapping at the watershed scale. 
 
 
Bayesian Kriging Model 
 
In the present research work, the precipitation information z(x) within the domain at 
location x is assumed to be a realization of a stochastic function Z(x). Soft data or 
subjective information is m(x), whose underlying random function is M(x). Its first two 
moments are assumed to be known a priori as E[M(x)] = µM(x) and Cov[M(x + h), M(x)] 
= CM(x + h,x), where h is the lag distance between two points. 
 As the covariance may be dependent on both support points x + h and x, the 
corresponding variogram function for the soft data is defined as: 
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The expression for the conditional variogram of Z(x) is: 
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 Assuming }1,2,...,);({ N=ixZ i  is the set of observation, the Bayesian kriging model 
estimates the value at a point x0 employing a linear estimator of the form: 
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where λi  is a set of constant weights to be determined and ZT(xi) is defined as: 
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 By applying the Lagrange multiplier technique, satisfying the non-bias condition and 
the minimum estimation variance, the following Bayesian kriging system is obtained: 
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where β  is a Lagrange multiplier. 
 The error in the estimate at point  x0  is given by: 
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 According to Omre (1987), the estimation variance is ensured to be non-negative if 
both MZγ (.) and ( ).,.Mγ  are conditionally positive definite functions. Therefore, MZγ (.) 
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may be chosen from the class of variogram functions usually applied in Geostatistics and 
( ).,.Mγ  should be chosen from a larger family of functions. Omre (1987) suggests that an 

unbiased estimator for MZγ (h) for all lag distances h  is: 
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GLUE METHODOLOGY 
 
The Generalized Likelihood Uncertainty Estimation (GLUE) which was discussed and 
applied by Beven & Freer (2001) is a simple methodology to assess the total 
uncertainty of a model response. It is based on the equifinality paradigm as discussed 
earlier. In summary, it is assumed that it is not possible to find an optimal parameter 
set, but only a population of parameter sets equally considered as good (behavioural) 
simulators of the corresponding system. 
 The GLUE methodology consists in the search for these behavioural parameter 
sets. As a result of the application of GLUE, one can, after determining these 
behavioural sets, weight the predictions by the likelihood related to the parameter set 
that produces them. These simulations constitute a range of possible discharge values 
that are likely to occur, considering the input data and the initial conditions. The 
greater these ranges, the greater the uncertainty in the model response. GLUE is based 
on the following steps: 
 

(a) definition of a likelihood function L and a threshold value  L*; 
(b) generation of a set of N independent parameter sets  θ = [θ1,θ2, θ3,..., θN] through 

sampling of the feasible parameter space; 
(c) evaluation of the degree of acceptance of each parameter set considering the 

likelihood function L; 
(d) choice of the behavioural NB parameter sets taking into account the threshold value 

L*;  
(e) with the NB behavioural parameter sets, constructing the likelihood distribution 

L(M[θi]), which can be used to establish the range of behavioural model 
simulations. 

 

 As stressed by Beven & Freer (2001), the choice of the likelihood function and the 
acceptance criterion are subjective, and should be subjected to further discussion 
before its use within the GLUE methodology. The results will be conditioned by these 
choices, and also by the input data and the model structure. 
 
 
CASE STUDY 
 
The main idea of this study is to assess the impact of increasingly sparse 
representations of the original precipitation field, which was synthetically generated by 
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the turning bands method. TOPMODEL, described in details by Beven et al. (1995), 
has been used to simulate the watershed response. This study has been carried out 
through the following steps: 
 

(a) a spatial precipitation field was generated using the turning bands method, with a 
Gaussian structure; this field was considered as the ground-truth precipitation 
field; a semivariogram model was adjusted for the normalized experimental 
semivariogram of the generated precipitation field (soft data); 

(b) a parameter set was chosen, which jointly with the ground-truth precipitation field, 
allowed the generation of the ground-truth streamflow record (4 months of hourly 
data); 

(c) a fictitious dense network of 50 randomly distributed gauges was established;  
(d) sparser networks with 30, 20 and 10 gauges were derived from this fictitious 

network; a semivariogram model was then adjusted for each one of the proposed 
scenarios (hard data);  finally, using these semivariogram models jointly with the 
normalized experimental semivariogram (soft data), the Bayesian kriging method 
was used to estimate the correspondent precipitation fields; 

(e) the GLUE methodology has been applied to each one of the derived precipitation 
fields; the discharge range was defined as containing 90% of the behavioural 
discharges. 

 
 
RESULTS AND DISCUSSION 
 
First, it should be noted that the Bayesian kriging methodology requires a semivariogram 
model for the normalized experimental semivariogram for the soft data, which in the 
present approach is assumed to be the spatial precipitation field generated by the turning 
bands method. In addition, it requires a semivariogram for the hard or ground-truth data, 
here considered to be the raingauge data. In fact, the study shows that, although not 
reported here, there is the presence of a correlation structure in the ground-truth raingauge 
dataset, as well as in the precipitation fields as depicted by the empirical omnidirectional 
semivariograms and by the empirical semivariograms defined for different directions. 
Additionally, the covariogram also indicates that, in fact, a relationship between 
raingauge data (hard data) and the data set provided by the simulated spatial precipitation 
fields (soft data) does exist. For the purpose of this work, the hypothesis of isotropy and 
the use of omnidirectional semivariogram were deemed acceptable. Secondly, it should 
be emphasized that the Bayesian kriging model uses a priori information. The raingauge 
data is used for this task.  
 Given the spatial precipitation structure, defined by the Bayesian kriging method, 
the results obtained using the GLUE approach showed that discharge ranges increased 
with the poorer representation of the ground-truth precipitation field (Figs 1 to 3). 
According to GLUE, the increase in discharge ranges represents an increase in 
uncertainty associated to the model response. As presented in Figs 1 to 3, the reduction 
of the initial sample used to generate the approximated precipitation field produced a 
greater degree of uncertainty in model response. 
 It can further be noted that at different time steps the observed discharges were not 
contained in the calculated ranges, which can indicate, following Beven & Freer (2001), 
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Fig. 1 Range[Q5%;Q95%] obtained for 30 gauges precipitation field. 
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Fig. 2 Range[Q5%;Q95%] obtained for 20 gauges precipitation field. 
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Fig. 3 Range[Q5%;Q95%] obtained for 10 gauges precipitation field. 
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errors due to structural problems of the model, but also errors in the observations. 
Moreover, with the reduction of the number of raingauges, an increasing 
overestimation of the calculated discharges was observed. 
 Additionally, the GLUE methodology allows performing a sensitivity analysis by 
means of evaluating the dispersion of the behavioural parameters. As the cumulative 
distribution function of the behavioural parameters differs from the 45° line, there is an 
increase in the sensitivity of the model parameter. Figures 4 and 5 indicate that the 
TOPMODEL presents high sensitivity to the m—exponential storage parameter, and low 
sensitivity to the TD—unsaturated zone time delay per unit storage deficit parameter. 
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Fig. 4 Cumulative distribution function of parameter m. 
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Fig. 5 Cumulative distribution function of parameter TD. 
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 It can be noted that Fig. 4 shows a distribution shift in the feasible parameter space 
as different precipitation fields were used. Poorer representation of precipitation 
provided expected values of m which differ increasingly with respect to the ground-
truth value used. This uncertainty caused a significant dispersion of the accepted 
simulations due to the great sensitivity of TOPMODEL to this parameter. Therefore, 
this effect can be confirmed by observing the increasing behavioural discharge ranges 
as presented in Figs 1–3. On the other hand, Fig. 5 depicts the similar behaviour of TD 
parameter pdf curves derived from the different samples due to the  low sensitivity of 
the model output with respect to this parameter. The only exception was the curve 
obtained from the 30 gauge sample. 
 The precipitation field generated from the 30 measurements sample has led to a 
better approximation of the mean precipitation value, which produced simulations 
closer to the ground-truth streamflows. This fact explains the unexpected result 
showed in Figs 4 and 5 in the sense that the line for 30 gauges is actually left of  those 
for 20 and 50 gauges. The reduction of the original 50 gauges sample has been done 
without a rigorous procedure, just selecting same points in a way that the remaining 
gauges could be reasonably equally distributed over the watershed. Important factors 
such as the local topography affect the precipitation formation, and therefore should be 
taken into account when defining the raingauge network. 
 As a final remark, it should be noticed that the results presented here should not be 
regarded as conclusive. Much more rigorous conditions (e.g. use of real precipitation 
and discharge data) have to be adopted to derive definitive conclusions of the impact 
of uncertain precipitation data on streamflows of a particular watershed. On the other 
hand, it should be emphasized that the presented framework is of general application, 
depending neither on a specific methodology to perform an uncertainty assessment nor 
on a particular hydrological model. The basis of this framework is the Bayesian 
kriging methodology, which can be applied to any watershed. The required data are 
streamflows, raingauge data and an estimation of the spatial correlation structure of 
precipitation distribution over the watershed, which can be obtained through the 
analysis of remotely sensed data, such as meteorological radar data.  
 
 
CONCLUSIONS  
 
This paper proposes a framework to analyse the total uncertainty in a model response 
due to the poor approximation of the precipitation field. Although its application does 
not involve great complexity, there are some important and not simple tasks that have 
do be done first, like the estimation of the precipitation semivariogram. After the 
choice of a hydrological model and a uncertainty assessment methodology, it can be 
used for evaluate the adequacy of an existing raingauge network, and it can guide the 
installation of new gauges.  
 The Bayesian kriging requires a semivariogram model for the normalized  
experimental semivariogram of the precipitation field which could be derived from 
satellite image or meteorological radar data (soft data). In addition, it requires a 
semivariogram for the hard data. From few raingauges, it might be difficult to derive 
the experimental semivariogram for the precipitation field. In this situation, our 
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suggestion would be to use a normalized semivariogram model based on the spatial 
soft data. It could be assumed that the normalized semivariogram for the soft data and 
for the hard data are quite similar. Therefore, the effect would be to denormalize the 
semivariogram for the soft data based on the actual variance of the problem.  
 One advantage of this methodology is that, because of the usual scarcity of hard 
data, it allows the use of soft data, which in the case of meteorological radar are 
provided in abundance, for defining the structural correlation of the physical variable 
necessary for modelling or mapping. Another one is the possibility of including the 
variance maps produced by the Bayesian kriging in the sensitivity analysis through a 
second order approximation. 
 Finally, the authors’ hope is that this work will bring new perspectives and insights 
for the assessment of uncertainty in hydrology. 
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