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Abstract Substantial uncertainties exist in the identification of river water 
quality models, which partially depend on the information content of the 
calibration data. To evaluate the dependencies between available calibration 
data and model predictions investigations were conducted based on a 536 km 
free-flowing reach of the German part of the River Elbe. Five extensive 
flowtime related longitudinal surveys with 14 sampling locations were used. 
The multi-objective calibration of the deterministic river water quality model 
QSIM of the BfG (Germany) was carried out with the nonlinear parameter 
estimator PEST. The Elbe case study showed that calibration with less than 
two survey data sets leads to substantial errors if these parameters are applied 
to deviating boundary conditions. These uncertainties can be reduced with an 
increased calibration database. The results of this study will help model users 
to define appropriate data collections and monitoring schemes. 
Key words  calibration; data information content; QSIM; river water quality model  

 
 
INTRODUCTION 
 
An important consideration when modelling is the uncertainty in the model results due 
to inadequate calibration data for model identification as well as due to errors in 
sampled data and model structure. Uncertain model identification often is caused by 
small amounts and information content of calibration data. Sources of error include:  
(a) errors in the data used as initial and boundary conditions in the model; (b) errors in 
the data used to calibrate and validate the model results; and (c) errors due to the 
structure of the model which includes the equations, solutions and parameters used for 
the simulations.  
 Investigations regarding the information content of data have been conducted 
mainly to increase the information made available for parameter identification through 
the calibration process. It has been shown that the use of multiple objectives for single-
output models, measuring the models performance during different response modes, 
can give more detailed information and allows the modeler to link model performance 
and model components (Boyle et al., 2001; Wagener et al., 2003). Time series data 
have been analysed to identify data points or time periods based on their information 
content. Vrugt et al. (2001) showed that the use of different localized subsets of time 
series data can improve parameter estimation if the range of measurements is 
sufficient. However, studies investigating the data information content for highly 
parameterized river water quality models based on complex multi-objective model 
identification are rare and model validation is often neglected.  
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 The specific objectives of the study were to: (a) assess the identification of a river 
water quality model using the PEST methodology, and to (b) evaluate the 
dependencies between available calibration data and model prediction using a cross 
validation procedure. The results of this study will help model users, e.g. at 
environmental agencies, to evaluate the uncertainties in river water quality models and 
to define appropriate data collections and monitoring schemes to achieve a sufficient 
accuracy of model predictions.  
 
 
MATERIAL AND METHODS  
 
Case study 
 
The River Elbe is one of the largest rivers in Central Europe with a length of 1091.5 km. 
Most water quality data used for this study were acquired by five longitudinal surveys 
of phytoplankton development and nutrient concentrations in autumn 1996, late 
summer 1997 and 1998, in spring 1999 (Guhr et al., 2003) and summer 2000 (Schöl 
et al., 2004). These surveys were carried out for the free flowing river reach from 
Schmilka at the German-Czech border to Neu Darchau in the lower part of the river 
with a length of 536 km. The five surveys represent seasonal development of algal 
biomass and nutrient concentration under a wide range of boundary conditions like low 
flow conditions (1998), high global radiation and nutrient limiting algal growth 
conditions (1999). Upper boundary conditions (start values) relevant to primary 
production and nutrient concentration development, i.e. discharge, temperature and 
light, for the five measurement surveys are given in Table 1. Up to nine samples were 
taken for each cross section. On the river reach from Schmilka to Neu Darchau flow 
times varied according to the discharge between 7 d for the survey in May 1999 and  
9 d for the survey in September 1998.  
 
 
 
Table 1 Start values of simulation runs, mean values at station Schmilka (3.9 km). 

Input variable Unit Oct. 1996 Aug. 1997 Sept. 1998 May 1999 July 2000 
Discharge m3 s-1 225 151 127 300 140 
Chlorophyll a µg L-1 8.6 37.2 17 63 45 
Share of diatoms  – 0.7 0.6 0.5 0.6 0.6 
Ammonium mg N L-1 0.18 0.12 0.06 0.12 0.10 
Nitrate mg N L-1 4.2 4.2 3.9 4.5 3.7 
SRP mg P L-1 0.16 0.16 0.20 0.05 0.23 
Dissolved 
phosphorus 

mg P L-1 0.17 0.16 0.22 0.06 0.25 

Silicon mg Si L-1 5.4 2.9 3.0 2.4 3.2 
Oxygen mg O2 L-1 9.3 7.9 8.5 11.4 7.3 
Suspended 
particulate matter 

mg L-1 20 20 25 20 18 

Water temperature °C 13.6 22.8 17.5 12.9 19.2 
Global radiation, 
daily sum  

J cm-2 400 1500 1130 1700 1600 
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 For the River Elbe case study the widely used river water quality model QSIM 
(BFG model) was applied (Kirchesch & Schöll, 1999, Schöl et al., 1999). The model 
has a modular structure, with main modules concerning hydraulic, physical, chemical, 
and biotic processes. Driving forces of the model are discharge at the upper boundary 
and of main tributaries as well as meteorological conditions including global radiation, 
air temperature, cloudiness, and wind velocity. Phytoplankton growth is simulated 
after Monod and Michaelis–Menten kinetics and the model distinguishes between two 
different algal classes. Hydraulic calculations are based on more than 3000 gauged 
river cross sections. The duration of the longitudinal samplings corresponds well with 
the computed flow times for all five surveys.   
 
 
Model calibration 
 
For model calibration the automatic Parameter Estimation Program (PEST) was used, 
which implements the Gauss–Levenberg–Marquardt method (Doherty, 2004). The 
optimization process is a “hill-climbing” technique in which from a starting point the 
steepest gradient of the objective function in the parameter space is calculated. The 
calculated uncertainty information of the parameters is determined on the same 
linearity assumption, which was used to derive the equations for parameter 
improvement implemented in the optimization process. Various tests were made to 
tune the PEST optimization algorithm to the specific case study. Since stoichiometric 
and physical parameters are usually more accurately known or show smaller variations 
from one system to another than parameters of kinetic processes (Omlin et al., 2001) 
primarily kinetic parameters were used for model calibration. Based on the sensitivity 
analysis in a first step most sensitive kinetic parameters were included in the parameter 
estimation process. In a second step, seven parameters were selected for the 
optimization process: maximum growth rate of diatoms (kgro,dia), minimum respiration 
rate of diatoms (kmin,res,dia), half-saturation coefficient of diatoms growth with respect to 
phosphorus (KHPO4,dia), half-saturation coefficient of diatoms growth with respect to 
nitrogen (KNO3,dia), minimum respiration rate of chlorophyceae (kmin,res,chlo), half-
saturation coefficient of diatoms growth with respect to silicon (KSi,dia) and half-
saturation coefficient of chlorophyceae growth with respect to phosphorus (KHPO4,chlo). 
These parameters were calibrated simultaneously according to the variables Chl a, 
NO3, O2, dissolved phosphorus (DP) and dissolved Si. Note that due to dependencies 
between model parameters the seven most sensitive parameters were not used for the 
automatic calibration process. All other kinetic parameters had only minor impact on 
the selected output variables.  
 In order to assess model performance more precisely it is useful to consider two or 
more objective criteria. The objective criteria used in this study were the Nash-
Sutcliffe coefficient E and the index of agreement d (Willmott, 1981) defined as: 
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where O  is the mean of the observed value, Oi is the observed and Pi is the simulated 
value. E measures the fraction of the variance of the observed water quality variables 
explained by the model in terms of the relative magnitude of the residual variance to 
the variance of the water quality variables; the optimal value is 1.0 and values should 
be larger than 0.0 to indicate minimal acceptable performance. The index of agreement 
varies between 0.0 and 1.0 with higher values indicating better agreement between the 
model and observations, similar to the coefficient of determination R². The index of 
agreement is also sensitive to extreme values, owing to the squared differences 
(Legates & McCabe, 1999). The objective criteria were used both for assessing the 
calibration and validation of the model. 
 
 
Evaluation of data information content  
 
The investigation of the data information content for the identification of the river 
water quality model calibration runs were conducted using data of 1, 2, 3, 4 and 5 data 
sets and all their possible combinations. This is a total of 30 data sets with differing 
number of flow time related longitudinal data sets and differing water quality condi-
tions. For each set, a single multi objective optimization using the PEST programme 
was conducted, where each optimization leads on an average of about 180 model runs 
depending on the amount of calibration data. Within the optimization process all 
calibration runs were conducted with the same initial parameter values and upper and 
lower parameter bounds. With respect to the five selected output variables, for all 
calibration runs the same seven kinetic model parameters were adjusted. A common 
technique of validating a model is using only a subset of all available data for 
calibration and testing model performance with the rest of the data. In this study the 
remaining 4, 3, 2 and 1 data sets not included in the calibration process were used for 
cross validation of the model.  
 
 
RESULTS 
 
To identify the “optimal” parameters for the River Elbe, the river water quality model 
was calibrated using all five longitudinal surveys. The results show good agreement 
between measured and simulated values for all variables (Chl a, NO3, O2, dissolved 
phosphorus (DP), dissolved Si). The simulated and observed values of Chl a, which 
represents algal biomass, are shown as an example in Fig. 1. The results indicate that 
the model is able to simulate algal growth for a wide range of boundary conditions 
with the identified model parameters. In the case of very high Chl a concentration 
model residuals tend to increase, contradicting the assumption of homogenous error 
variance. Considering the z-distribution of normalized residuals for all five output 
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variables we found a good approximation of the normal distribution with a mean value 
of –0.14 (Figure 2). Z is defined as the difference between the value and the mean 
divided by the standard deviation of the residuals of a given variable. This indicates 
that the multi objective model calibration leads to a well-defined model for the River 
Elbe. Hence, we got confidence that the PEST multi objective calibration procedure is 
able to identify optima for all seven parameters used for model calibration. Due to the 
selected “hill-climbing” parameter estimation method previous knowledge about the 
parameter values and their lower and upper bounds support the calibration process. 
 Empirical cumulative distribution function (cdf) of the calibration runs for the d 
and the E statistics of different numbers of data sets was constructed (Fig. 3). Each cdf 
indicates the chance of obtaining a statistic of magnitude if a data set of that number of 
longitudinal surveys is selected at random and used for calibration. The d and E cdfs 
shift to the right as we increase the number of longitudinal survey data sets used 
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Fig. 1 Observed and simulated Chl a concentrations based on five calibration data sets.  
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Fig. 2 Z-distribution of normalized residuals for the calibration run with five data sets. 
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Fig. 3 Empirical cumulative distribution functions (cdf) of the d and E statistics for 
different numbers of data sets for the calibration runs.  

 
 
for calibration. The shift to the right indicates improvement of model performance with 
increasing number of longitudinal data sets (compare Yapo et al., 1996). The 
calibration cdfs only shift significantly to the right when increasing the number of data 
sets from one to two, showing that only small improvements of model performance 
can be achieved when using more than two calibration data sets.   
 The E values show for all investigated combinations considerable lower levels to 
the d values. Increasing the number of calibration data sets leads to a shift of the 
cumulative distribution function to the right only for very low E values, reflecting the 
high sensitivity of this performance criterion. The E cdfs show a similar behaviour 
than the d objective criteria. The mean value of E is with 0.45 lowest using one data set 
for model calibration and the standard deviation shows the maximum decrease form 
0.51 to 0.37 using two calibration sets instead of one (see Table 2). No substantial 
improvement could be achieved when more than two calibration runs were used. 
 
 
Table 2 Mean and standard deviation of E and d objective criteria for calibration and corresponding 
validation data sets.  

 Number of 
data sets 

Nash and Sutcliffe Index of Agreement 

 

Number of 
objective 
criteria Mean SD Mean SD 

Calibration 
1  25 0.45 0.51 0.85 0.12 
2  100 0.49 0.37 0.85 0.11 
3  150 0.47 0.38 0.84 0.11 
4 80 0.51 0.38 0.85 0.10 
5 25 0.52 0.33 0.84 0.11 
Validation 
4 100 0.29 0.65 0.80 0.14 
3  150 0.44 0.41 0.83 0.12 
2 100 0.47 0.39 0.84 0.11 
1 20 0.50 0.30 0.83 0.11 
SD, Standard deviation. 
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Furthermore, the means and standard deviations show that d is much less sensitive 
compared to the E objective criteria. To test whether the samples from the different 
numbers of data sets come from the same distribution we used the Kolmogorov-
Smirnov two-sample test. The K-S statistic uses the maximum vertical differences 
between two empirical cumulative distribution functions as a test criterion. This 
absolute difference was always highest when the d and E cdfs for one data set were 
related to the cdfs of more than one data set compared to other possible combinations. 
Although these findings are supported by the visual inspection of the cdfs the K-S 
statistic, which was calculated for comparison of all data set results, does not allow 
distinguishing the cdfs at the significant level of 0.10.  
 The d cdfs for validation steepen progressively with increasing number of 
calibration data sets and hence decreasing number of validation data sets (Fig. 4). 
Increasing the steepness indicates reducing sensitivity of model performance to 
selection of data sets. The validation cdfs show a decrease of the range of d and E 
values when increasing calibration data sets and hence decreasing corresponding 
validation data sets. The overall performance of the validation improves only 
significantly when increasing the number of calibration data sets from one to two data 
sets. These findings are restricted to the specific conditions of the River Elbe during 
the growing season with its high algal biomass concentrations of up to 200 µg L-1 Chl 
a and hence significant dependencies between algal biomass and nutrient 
concentrations. In the case of more complex boundary conditions, e.g. high inputs 
from sewage plants, higher abundance of benthic filterers which could reduce the level 
of Chl a and less significant relationships between water quality constituents more than 
two longitudinal surveys may be needed for reasonable model identification. 
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Fig. 4 Empirical cumulative distribution functions (cdf) of the d and E statistics for 
different numbers of data sets for the validation runs. 

 
 
CONCLUSION 
 
The investigation on data information content showed that calibration with single flow 
time related measuring surveys lead to substantial errors if these parameters are 
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applied to deviating boundary conditions. These uncertainties can be decreased with an 
increased calibration database. For the specific conditions of the River Elbe, at least 
two longitudinal data sets of different boundary conditions during the growing season 
should be used for model calibration and the benefit of the use of more than two data 
sets may be marginal. Since the River Elbe represents relatively strong and significant 
relationships between algal growth and nutrient concentrations these findings represent 
minimum requirements of data sets of flow-proportional longitudinal river water 
quality surveys. In most cases with less significant relationships between water 
constituents more than two data sets of flow proportional longitudinal surveys of the 
growing season will be needed for reasonable river water quality model identification. 
The introduced cross validation procedure is a good opportunity to identify data needs 
for model calibration in the case of limited high quality data, which is a common 
situation in river water quality studies. 
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