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Abstract River discharge observations are usually affected by uncertainty, 
which is due to many concurrent causes and strongly affects the response of 
rainfall–runoff models. The present paper is aimed at studying the influence of 
imperfect rating curve knowledge on the uncertainty of the response of a daily 
conceptual linear-nonlinear rainfall–runoff model. To describe the impact of 
imperfect rating curve knowledge, simulations have been conducted using a 
conceptual rainfall–runoff model and continuous daily series of rainfall, air 
temperature and discharges recorded in a Sicilian catchment. The GLUE 
procedure was used to introduce the uncertainty of the rating curve in a 
classical rainfall–runoff model uncertainty analysis by randomly modifying 
the original rating curve. The final results show an increase of uncertainty with 
respect to the original rating curves for the majority of model predictions, but 
more significantly for overestimated rating curves than underestimated ones. 
Key words  GLUE; IHACRES; rating curve; rainfall–runoff model; uncertainty 

 
 
INTRODUCTION 
 
The knowledge of runoff in rivers is an essential requirement for the assessment of 
surface water resources. Runoff is commonly estimated indirectly by means of a curve 
relating water level (stage) to discharge. Actually, river discharge observations are 
never correct. As any other observed variable, they are affected by uncertainty which is 
due to many concurrent causes: uncertainty in measurements during field campaigns 
(unsteady flow, material in suspension, disturbance by wind, etc…), hysteresis effects, 
utilization of a simple form curve with a unique stable relationship between water level 
h and discharge Q, uncertainty arising from extrapolation of rating curves (Clarke 
et al., 2000; Kuczera, 1996) and, mainly, complications caused by gradual or abrupt 
changes in rating curves over time. Now, using discharges calculated by means of a 
rating curve, for the calibration (validation) of a rainfall–runoff model, preferably 
includes knowledge regarding how this uncertainty propagates through the model 
structure and its influence especially on model parameters and an evaluation of model 
performances (Montanari, 2004). As a matter of fact, quantifying the uncertainty due 
to gradual or abrupt changes in rating curves over time is not easy; the goal of this 
study is to explore the possibility of using the GLUE framework to take into account 
the influence of the uncertainty of the rating curve on the model predictions. 
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INFLUENCE OF RATING CURVE UNCERTAINTY ON MODEL 
PREDICTIONS  
 
An historical series of discharge observations is generally calculated by filtering 
hydrometric heights on a rating curve. For this purpose an “historical” rating curve can 
be obtained by fitting mean daily discharges and corresponding water levels (river 
stages), measured at specific river cross section. These empirical points are usually 
interpolated with a unique two-parameter power law which can cover the entire range 
of measured variables or with two or more curves each specified for the a particular 
interval. Uncertainty exists on the discharge values derived rating curve and a way to 
manage this uncertainty is to consider a “region” of the space (Q-h) in which the 
historical rating curve and the “uncertain” curves are most likely found (Fig.1(a)). The 
limits of this region can be seen as uncertainty bounds of the values of the historical 
rating curve and can be derived within a Monte Carlo framework, as it is rather 
difficult to know them a priori if all sources of uncertainty are considered. 
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carry out this analysis is to use a Monte Carlo calibration technique such as GLUE 
(Beven & Binley, 1992), which was developed as a methodology for the calibration 
and estimation of uncertainty of predictive models based on the idea of equifinality of 
models. 
 
 
APPLICATION TO A CASE STUDY 
 
In order to evaluate the influence of rating curve uncertainty on the hydrological 
response the proposed method has been applied to the San Leonardo River. The San 
Leonardo catchment, with an area of 520 km2, is located in the northwestern part of 
Sicily, Italy. The catchment has a Mediterranean type climate with hot dry summers 
and a rainy winter season from October to April. The S. Leonardo catchment receives 
approximately 900 mm of precipitation annually with a mean annual runoff of 300 
mm. This climate type is Dry-Subhumid, according to the Thornthwaite classification. 
The hydrological response of this basin is dominated by long dry seasons and 
following wetting-up periods. The catchment can be considered as geologically 
homogenous, the dominant rock type being clay, siltstone and dolomite with 
calcareous soils. The indigenous vegetation is characterized by weeds, tree-shrub 
formations (mainly, olive-trees) and large agricultural areas for wheat cultivation.  
 The hydrological response of the catchment has been modelled by means of the 
conceptual rainfall–runoff model IHACRES (Identification of Hydrographs And 
Components from Rainfall, Evapotranspiration and Streamflow Data) (Littlewood 
et al., 1997). In IHACRES the rainfall–runoff processes are represented by two 
modules: (1) a nonlinear loss module transforming precipitation into effective rainfall, 
and (2) a linear module based on the classical IUH theory to derive the total 
streamflow. 
 The nonlinear loss module involves calculation of an index of catchment storage 
s(t) for time step t, based upon an exponentially decreasing weighting of precipitation 
and temperature conditions: 
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where s(t) is the catchment storage index varying from 0 to 1, τw[T(t)] is a variable 
controlling the rate at which the catchment wetness index s(t) decays in the absence of 
rainfall, τw is the value of τw[T(t)] at T = 20°C, c is a parameter chosen to constrain the 
volume of effective rainfall to equal runoff, f is a temperature modulation factor on the 
rate of temperature, z-1 is the backward shift operator. The effective rainfall u(t) is 
computed as the product of total rainfall r(t) and the storage index s(t): 

)()()( trtstu ⋅=  (4) 

 In this study, following Ye et al. (1997), two extra parameters l (initial water-
holding storage) and p (exponent of a power-law) were used to generate u(t) to take in 
account the strong nonlinearity caused by the impact of long dry periods on the soil 
surface of low-yielding ephemeral streams: 
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 The linear convolution of net rainfall with the total unit hydrograph is allowed to 
be for three parallel elements: a linear channel and two linear reservoirs each 
describing the three main runoff components: surface flow, subsurface flow and 
baseflow. The form of the impulse response derived from the combination of these two 
linear elements has been expressed as: 
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 The response of the quick component is expressed in the form of Dirac delta 
function δ(t), because the catchment time lag is sufficiently smaller than the time 
interval of data aggregation and is fed by a fixed percentage of x0 of the effective 
rainfall. The subsurface flow and baseflow slow components are expressed with 
exponential decay laws characterized by the coefficients λs and λq respectively equal to 
the inverse of the time constant for the reservoirs τs and τq fed by a fixed percentage of 
xs and xq of effective rainfall. 
 Model input data are spatially averaged rainfall and air temperature daily series, 
collected from January to December 1974 over the catchment, and daily discharge data 
measured at the San Leonardo at Monumentale gauging station located near the river 
mouth. These discharges were derived, apart from the river stage observations, through 
a stage–discharge relationship (rating curve) which is known for the same year. It is 
well known that a rating curve can vary even within a single year, especially for 
semiarid catchments, characterized by an intermittent regime. Such eventuality led us 
to choose just one year (1974) for this study where discrete points of stage and 
contemporaneous discharge were interpolated through a two-parameter power law. 
 Finally, the Generalized Likelihood Uncertainty Estimation (GLUE) methodology 
of Beven & Binley (1992) is used here in the estimation of predictive uncertainty of 
the rainfall–runoff model. 
 
 
RESULTS AND CONCLUSIONS 
 
Firstly, the (“historical”) rating curve, obtained by the interpolation of the point 
representing the water level and discharge observation for the year 1974, has been 
considered correct, or rather lacking in uncertainty, so that model input data were 
represented by these “correct” data. A total of 30 000 sets of parameters for the model 
were generated, each parameter value being drawn from ranges thought feasible for the 
San Leonardo catchment on the basis of previous experience (Table 1). 
 Simulations were performed, for each parameter set for comparison between 
generated series of discharge and measured series of discharge observation. For each 
of these simulations a performance index has been evaluated in the form of the Nash 
and Sutcliffe Efficiency Criterion (Nash & Sutcliffe, 1970):  
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Table 1 Parameter ranges of IHACRES model used in the Monte Carlo sampling. 

Parameter c  
(mm) 

τw 
(days) 

f 
(°C-1) 

x0 xq xs τq 
(days-1) 

τs 
(days-1) 

l  p 

Upper limit 0.01 1 1 0 0 0 1 30 0 0.1 
Lower limit 1 20 10 1 1 1 30 400 3 5 
c, volume-forcing constant;  τw, basin drying time constant; f, temp. modulation factor; x0, channel quick 
flow volumetric throughput; xq, reservoir quick flow volumetric throughput; xs, reservoir slow flow 
volumetric throughput; τq, quick flow time constant;  τs, slow flow time constant; l, initial water-holding 
storage parameter; p, power-law parameter. 
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Fig. 2 Uncertainty bounds for 5% and 95% quantiles (dashed lines) for historical 
discharges (solid line). 
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where L(θi/Y) is the likelihood measure for the ith model simulation for parameter 
vector θi conditioned on the set of “historical” discharge observations Y, 2σ i  is the 
associated error variance for the ith model and 2σobs  is the observed variance for the 
period under consideration. 
 From the cumulative distribution of discharges at each time step, the chosen 
discharge quantiles, 5 and 95%, have been calculated to represent the model 
uncertainty for the likelihood measure considered. Figure 2 shows the discharge 
prediction bounds based on the likelihood measure of equation (7) for the “historical” 
discharge series. Subsequently, the uncertainty in the rating curves has been considered 
according to the procedure described above and, particularly, choosing for the kmax 
coefficients in equation 1 the values of 0.5 and –0.5. Thus, within the region defined 
by these two bounds, 100 synthetic rating curves have been generated under the 
hypothesis of uniform distribution of the discharge values (Fig. 3(a)) and, hence, 100 
new discharge series, containing the uncertainty from the rating curve (Fig. 3(b)). 
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Fig. 3 (a) Example of generated rating curves. (b) Discharge series derived apart the 
generated rating curves compared with the historical values (white dots). 

000 simulations were performed, for each parameter set and for each 
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ity, in Fig. 4(a) and (b) only the uncertainty bounds for the two groups 
orresponding to the Qbound (k = ±0.5) were reported. 
ht, the results reported in Fig. 4 seem to reveal how the uncertainty in 
ve strongly affects the uncertainty in model predictions, but the 
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Fig. 4 (a) Uncertainty bounds for 5% and 95% quantiles (dashed lines) with Qbound (k 
= –0.5) (solid line). (b) Uncertainty bounds for 5% and 95% quantiles (dashed lines) 
with Qbound (k = 0.5) (solid line). 
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nd Q5,i are the 95% and 5% quantiles, respectively, at ith time step for the 
tions performed using the rating curve defined by a certain value of k, Qi 
ge (“measured”) derived form the rating curve characterized by the same 
 is the length of the discharge series, (i.e. in this case N = 365). To allow a 
etween uncertainty bounds for different values of predicted variable, the 

en normalized with respect to the value of measured discharge. Figure 5 
s the increase of uncertainty in respect to the historical condition (k = 0) 
rity of runs characterized by different values of k. Actually, the dashed 
e represents the value of MWBnorm for the historical rating curve and the 
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majority of the black dots lies above this line. Further, this behaviour is more 
significant for values of k greater than k lower than 0. 
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Fig. 5 Mean Width of Bound normalized vs k coefficient for all simulations.  

 
 
CONCLUSIONS 
 
A study on the influence of imperfect rating curve knowledge on the uncertainty of the 
response of a daily conceptual linear-nonlinear rainfall–runoff model was presented. 
The GLUE procedure was used to explore the influence of uncertainty of the rating 
curve in a classical rainfall–runoff model uncertainty analysis. The final results clearly 
show how, by taking into account the uncertainty of the rating curve in the calibration 
of the R-R model, a variation of uncertainty in the model predictions can be noted in 
comparison with the original situation. This behaviour seems to be more significant for 
overestimated rating curves than underestimated; this is to point out how the overesti-
mation of the historical discharge has a great effect on the uncertainty of model 
predictions. Conversely, for underestimated rating curves the uncertainty seems to 
reduce or, even, to be lower then the uncertainty of original conditions. Probably, this 
latter result is due to the fact that underestimation of rating curves returns discharges 
with values very close to 0 and, hence, with a little uncertainty. 
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