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Abstract This paper introduces the Multi-Model approach to rainfall–runoff 
modelling: a new lumped modelling method that incorporates numerous 
alternative process descriptions for the dominant processes within a catchment 
that affect the streamflow response to climatic forcing conditions. An 
extended GLUE approach is used to calibrate the numerous model structures 
contained, obtaining the best 100 parameter sets from two million (uniform) 
randomly sampled sets for each of the 45 model permutations contained. 
These model/parameter combinations were then used to produce prediction 
confidence limits for subsequent runoff predictions, including a calibration 
period, validation period and a synthetically determined extreme event period. 
Additionally, the ability of the calibration process to constrain the internal 
dynamics of models is investigated. The results indicate that calibration to 
simple runoff data alone is insufficient to constrain the saturation excess 
process description. Further potential conditioning of the models against 
saturated area is then investigated to refine the extreme event prediction 
uncertainty envelopes, showing that a single uncertain criteria limitation (on 
the extreme event flood peak saturated area) does little to improve the 
uncertainty envelopes. However, when multiple observations are utilized (on 
the flood peak and the recession saturated areas) the runoff generating process 
is sufficiently constrained to dramatically reduce the runoff prediction 
uncertainty envelopes for the extreme period, irrespective of model structure. 
Key words  extreme event; rainfall–runoff modelling; saturated area; uncertain conditioning 

 
 
INTRODUCTION 
 
All environmental models are subject to three dominant sources of error that affect the 
accuracy of any predictions produced. These are input, parameter and model 
hypothesis uncertainty (Freer et al., 1996; Kuczera & Franks, 2002; Sivapalan 2003). 
The modelling method described in this paper seeks to address the third source of 
modelling uncertainty, i.e. model hypothesis uncertainty. Environmental models con-
sist of a series of mathematical functions that are simplifications of the very complex 
natural systems that are being modelled. Model hypothesis uncertainty arises when 
these simplifications do not reflect the natural system, therefore introducing an error 
into the model predictions. Indeed the huge spatial and temporal variation in natural 
systems present in catchments leads to the conclusions that the identification of a 
single model that is valid for all applications is impossible (Beven, 1989, 1993). As 
such, the development of rainfall–runoff models has typically been relatively 
catchment (and application) specific, often requiring manual modifications to a pre-
existing model structure (e.g. Ambroise et al. (1996) demonstrated that three different 
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catchments required three different baseflow formulations within the TOPMODEL 
(e.g. Beven et al., 1995 framework). The Multi-Model approach to rainfall–runoff 
modelling allows for the inclusion of numerous alternative process descriptions, as a 
means of incorporating the uncertainties that arise in rainfall–runoff modelling due to 
biases that are introduced into the runoff predictions through model structure 
uncertainty. By including many alternative process descriptions, runoff predictions are 
made using a broad range of modelling descriptions, weighted according to their 
ability to reproduced observed data series. 
 
 
MODEL OUTLINE 
 
Model structure 
 
Multi-Model includes numerous alternative process descriptions for the principal 
components of most lumped rainfall runoff models: interception canopy, surface flow 
generation, root zone and deep storage zone. Figure 1, a schematic of Multi-Model 
shows how these processes are linked together, including the required inputs and 
outputs for each. 
 
 

 
 
 
 Interception The interception canopy models the influence of evaporation and 
canopy storage on the amount of water that reaches the land surface. Using the 
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 Fig. 1 Multi-Model schematic. 
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observed rainfall (P [LT-1]) and potential evapotranspiration (EP [LT-1]), canopy 
drainage (D [LT-1]) and evaporation losses (EI [LT-1]) are computed, whilst accounting 
for changes in canopy storage (VS [L]). Three alternative computations are included: a 
“Null’ model (i.e. VS = 0, D = P and EI = 0); a “Linear” model (i.e. 

[ ]0,max CAPS VVD −=  & [ ]CAPSPPI VVEEE ,min= ); and a “Rutter” (e.g. Rutter et al., 
1971, 1975) model: 

( )[ ]



>−−β
≤−

=
0 ifexp
0 if0

0 CAPSCAPS

CAPS

VVVVD
VV

D  (1) 

 Surface flow Surface flow (QS [LT-1]) is calculated as the canopy drainage that 
falls on the saturated fraction (AS [-]) of the catchment (i.e. QS = AS D), with the 
balance becoming throughfall (TF [LT-1]). 
 

 Rootzone The rootzone component models the influence of evapotranspiration 
losses (ERZ [LT-1]) and storage effects (SS [L]) within the uppermost soil layers on the 
infiltration (I [LT-1]) to deep storage. Aside from the “Null” model (ERZ = 0, I = TF 
and SS = 0), four parametric models are included. Evapotranspiration losses are linearly 
proportional to storage depth with respect to either the storage capacity (i.e.  
ERZ = min[(Ep – EI), (Ep – EI) SS/SCAP]) or storage threshold (i.e. ERZ = min[(Ep – EI), 
(Ep – EI) SS/STHRES])). Infiltration is computed as either the storage excess (i.e.  
I = max[Ss –SCAP,0], where −−+ −+= RZSS ETFSS ), or as a fixed fraction of TF, with any 
additional storage excess (i.e. I = I0 + αTF, (i.e. where I0 = max[SS – SCAP, 0] and 

( ) −−+ −α−+= RZSS ETFSS 1 ). 
 

 Deep storage The deep storage model produces the baseflow (QB [LT-1]) and 
saturated area (AS [-]). Two alternative models are included: a “Linear” model which 
uses simple linear functions to relate deep storage depth to the saturated area (i.e. 

[ ]1,min(
MAXDDS SSA γ= ) and baseflow (i.e. DBB SkQ = ), and; the “VIC” (e.g. Wood 

et al., 1992), which uses a nonlinear equation to relate saturated area to deep storage 
(i.e. ( ) ( )111 +ββ−−= MAXDS SSA ). In cases where the “Null” rootzone model is in use, 
evapotranspiration is computed from the deep storage (i.e. 

( ) ( )( )e
DDIPD SSEEE β−−−= 1

max11 ) 
 
 
Structure management 
 
The resulting range of model permutations is managed using a “look-up” table which 
assigns a unique model identification number (MI) to each model permutation. For 
each model component (i), a component option (ji) is selected from the number of 
possibilities (Ni), which combine according to equation (2) below to produce the 
unique MI. 

( )∑
=

−+=
M

i
ii jbI

1
11 , where ∏

−

=

=
1

0

i

k
ki Nb and ii Nj ≤≤1  (2) 
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Table 1 Physical an
Characteristic 
Catchment area  (tot
Latitude 
Longitude 
Mean annual rainfal
Mean annual runoff
Runoff coefficient 
Mean annual potent
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some physical an
 
 
Observed data s
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the performance
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area-corrected ob
(recorded at dail
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ig. 2 Location of Brogo River (represented by the star), NSW, Australia
  

d hydrological characteristics of the Brogo River. 
Value Unit 

al forested) 460 (430) km2 
36.54 Degrees south 
149.83 Degrees east 

l 906 (416.76) mm (×106 m3) 
 291 (133.86) mm (×106 m3) 

0.32 – 
ial evapotranspiration 1078 (495.88) mm (×106 m3) 

ND DATA 

tion 

cused on the Brogo River catchment, North Brogo, situated in the 
ner of New South Wales, Australia (see Fig. 2). Table 1 summarizes 
d hydrological characteristics of the study catchment. 

eries 

mon applications of rainfall–runoff models is the prediction of 
reme events. However, the validity of such predictions is uncertain 
s the models to be applied to forcing conditions that are well beyond 
its used for calibration (e.g. Kalma et al., 2001; Seibert, 2003). To test 
 of the model performance outside the forcing conditions, a limited 
ed for calibration and preliminary verification. A two year period of 
served precipitation, streamflow and potential evapotranspiration data 
y time steps) is selected and divided into calibration and verification 
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periods of one year each. An additional 100 day period of observed data was appended 
to this series, containing the 1 in 100 year, 72 h duration design storm for the 
catchment (calculated according to the method described in Australian Rainfall and 
Runoff, Chapters 2 and 3, Pilgrim et al, 1987) to test the behaviour of the models 
beyond the observed limits of the forcing data (see Fig. 3). 
 
 
Glue calibration 
 
The Generalized Likelihood Uncertainty Estimation scheme (e.g. Beven & Binley, 
1992; Beven, 1993; Romanowicz et al. 1994; Freer et al., 1996; Franks et al., 1998) 
provides a means of conditioning the parameter distributions of environmental models 
and generate prediction uncertainty envelopes that incorporate parameter uncertainties. 
When combined with the Multi-Model method, a means of producing runoff 
predictions that combine both parameter and model structure uncertainty is achieved. 
Figure 4 below shows how the multiple parameter-sets and model structures interact to 
produce the range of runoff predictions. 
 For each of the 45 model permutations contained within Multi-Model, the best 100 
parameter sets from two million randomly sampled parameter sets are stored (resulting 
in a total of 90 million GLUE realizations, with 4500 parameter samples and model 
structures being used for uncertainty envelope estimates). The performance of each 
parameter set is assessed and compared for the calibration period using the Sum of 
Squared Errors (SSE). 
 
 
Confidence limits 
 
The efficiencies that are calculated during the calibration period are used to compute 
the 95 percentile confidence limits for the modelled runoff series. To do this, the raw 
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SSE values for each model / parameter set combination (n = 1 to 4500) is converted to 

a relative likelihood (Ln [–]) according to ( ) ( )∑
=

∝
4500

1
11

n

k
n

k
nn SSESSEL . These 

relative likelihoods are then used to compute the 95 percentile confidence limits for the 
runoff predictions. 
 
 
MODEL SIMULATIONS 
 
Calibration series 
 
The calibration period performance of Multi-Model (across all model permutations and 
associated parameter sets) is shown below in Fig. 5(a). Importantly, the 95 percentile 
confidence limits of the modelled streamflows contain the entire observed series, 
including peaks and low flow periods, indicating that across the spectrum of model 
structures, the complete dynamic of the system (at least within the calibration period) 
is modelled. The upper confidence limit seems to indicate an overestimation of the low 
flow periods. This is possibly a result of parameter sets which are poorly targeted at 
low-flow periods (since the SSE places little weight on low-flow periods); some model 
structures that are unable to handle extended periods of low-flows; errors within the 
observed rainfall series (which will be amplified during such periods), or a 
combination of the three. 
 

 Fig. 4 Schematic of the Extended GLUE method employed. 
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Verification limits 
 
The performance within the validation period (Fig. 5(b)) shows the performance of 
Multi-Model outside the calibration period. Like the calibration period performance, 
the observed runoff series is well contained within the 95% confidence limits produced 
by Multi-Model. 
 Again Fig. 6 shows the wide range of performances for the various models 
contained within Multi-Model. The uncertainty limits computed for the validation period 
are congruous with those computed for the calibration period, with a further decay of the 
uncertainty limits of the “worst” model, failing to contain parts of the flood recession 
and overestimates the low flow periods (for the same reasons that are mentioned above). 
 
 
Extreme event performance 
 
Figure 7(a) shows the Multi-Model performance for the extreme event, well above the 
forcing ranges observed during both the calibration and validation periods. Note that 
the uncertainty estimates for the extreme peak flow range from ~120 mm day-1 to 340 
mm day-1. The “best” and “worst” of the individual models contained within Multi-
Model for the extreme period produce uncertainty limits that are similar to those 
achieved with the Multi-Model approach (Fig. 7(b) and 7(c), respectively). This is 
particularly interesting as it demonstrates that irrespective of model structure, 
extrapolation to extreme events seems highly uncertain. 
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EXTREME EVENT PREDICTION REFINEMENT USING UNCERTAIN 
CONDITIONING 
 
Uncertain conditioning – Saturated area 
 
The wide uncertainty limits observed during the extreme event period highlight the 
shortcomings of “runoff-only” based calibration common for most calibration 
strategies. The wide modelled saturated area uncertainty envelopes for the extreme 
event (shown in Fig. 8) show clearly that the inability of “runoff-only” calibration 
techniques to constrain the internal variables of conceptual rainfall–runoff models. 
These wide uncertainties provide an opportunity to introduce additional information to 
describe the saturated areas at selected points in the times series, in order to 
“differentiate between previously acceptable models, rejecting many as non-
behavioral” (Franks et al., 1998). In the absence of real saturated area measurements, 
reasonable estimates are used. 
 
 
Case 1: Single uncertain constraint 
 
The first implementation of uncertain conditioning applies a single uncertain constraint 
on the saturated area at the flood peak (day 68 in the time series). An upper limit of 
30% and a lower limit is 25%. This reduction in saturated area uncertainty did not 
however translate into a reduction in the uncertainty estimate envelopes for the predic-
ted runoffs (Figure 9(a)), which changed very little when compared to the original 
extreme event period. These results are consistent with Blazkova & Beven (2003). 
 
 
Case 2: Two uncertain constraints 
 
The second implementation of uncertain condition of the extreme event predictions 
added an additional uncertain condition to the saturated area, four days after the 
extreme flood peak (i.e. day 72 in the time series), with upper and lower saturated area 
limits of 25 and 20%, respectively. The resulting runoff prediction confidence limits 
for the extreme period (Fig. 9(b)) are found to be dramatically narrower than previous 
runoff predictions, resulting in a very well defined extreme event runoff prediction. 
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CONCLUSIONS 
 
The Multi-Model approach presented here provides a means to make runoff 
predictions which, when combined with the GLUE methodology, produce confidence 
limits that include uncertainty effects arising from both parameter uncertainty (by 
using multiple parameter samples) and model uncertainty (by using multiple models 
equally, regardless of complexity). The extended GLUE approach allows the numerous 
runoff predictions (based on different model structures and different parameters) to be 
treated equally, regardless of model complexity, since the model behaviour that is 
required beyond the calibration observation limits in forcing conditions is unknown, 
meaning that any method that weights the model complexity and calibration 
performance together (e.g. Bayes factors) are only valid when applied to forcing 
conditions within the range of hydrological conditions observed during the calibration 
period. 
 The usefulness of combining uncertain conditioning estimates for the internal 
variables that are used within Multi-Model was also shown to be an effective means of 
constraining the runoff predictions from what were very wide confidence limits (re-
sulting from the wide range of models used and the range of associated parameter sets, 
being applied well outside of the limits of the observed forcing conditions within the 
calibration period). Franks et al. (1998) showed valuable constraint of TOPMODEL 
simulations when conditioned on saturated area during a single storm. However, the 
constraint appears largely as a function of conditioning only a single, predetermined 
model. As has been shown here, when multiple alternative and possibly divergent 
model representations are utilized, a single constraint is insufficient to constrain the 
dynamics of these representations, indicating that multiple observations of saturated 
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area may be required to improve the realism of model simulations. Above all, it must 
be acknowledged that calibration to runoff data alone is insufficient to constrain the 
key flow generating mechanisms in lumped rainfall–runoff models. 
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