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Abstract A method to identify hydrological prediction uncertainties is pro-
posed through recognizing and quantifying different uncertainty sources in 
hydrological modelling. Based on this methodology, an index which originates 
from the Nash-Sutcliffe efficiency measure, named the Model Structure 
Indicating Index (MSII) is developed to quantify model structure uncertainty. 
The results of hydrological model comparisons show that the MSII can reflect 
the goodness of a hydrological model structure well. The index can be used as 
a tool for implementing quantitative comparison and selection of models. 
Key words  hydrological prediction; model comparison; model evaluation;  
prediction uncertainty 

 
 
INTRODUCTION 
 
A hydrological model is an integration of mathematical descriptions of conceptualized 
hydrological processes. It is difficult to completely represent hydrological phenomena 
in mathematical descriptions. Thus the performance of a hydrological model is highly 
dependent on the hypothesis of the model, the hydrological data used for calibration 
and simulation, the calibration method and its model structure. Underestimating or 
misunderstanding of these factors and the interrelation among them may result in the 
tremendous misinterpretation of the results of hydrological models. For many years, 
hydrologists have tried to understand the effects of these factors on the accuracy and 
reliability of estimated hydrological variables such as peak flow and flood volume. 
 However, it is not well understood how most of those hydrological models are used 
under an unknown magnitude of input uncertainty. A calibration process makes the 
model functionally capable of generating a good simulation of the watershed response 
data series. To ensure the calibration process is acceptable and workable, a validation 
process is essential. Again, the precision or the accuracy of the data, which is used for its 
validation, is unknown. The methodology proposed in this study tries to cut the Gordian 
knot by acknowledging that input uncertainty is inevitable in hydrological modelling. 
 The methodology is developed to recognize and quantify the different uncertainty 
sources by observing model behaviour under different levels of input uncertainty. The 
adequacy of hydrological models applied to the same watershed is then ranked. Instead 
of sampling the parameter space directly as the Generalized Likelihood Uncertainty 
Estimation (GLUE; Beven & Binley, 1992) procedure does, the methodology proposed 
here generates the parameter space by introducing noise into the input data with a 
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specified probability distribution function. This approach reflects the problem that 
partial parameter uncertainty comes from the uncertainty of data at hand and the way 
the model structure responds to it.   
 The Nash-Sutcliffe efficiency (Nash & Sutcliffe, 1970) is used as a measure to 
quantify predictive uncertainty; then an index which originates with the Nash-
Sutcliffe efficiency named the Model Structure Indicating Index (MSII) is used to 
quantify model structure uncertainty. The index is used as a tool for implementing 
quantitative comparison and selection of models. 
 Several hydrological models are used for model comparison in this study. They 
are: Storage Function Method (SFM) (Kimura, 1961), TOPMODEL (Beven & Kirkby, 
1979), and KW-GIUH (Lee & Yen, 1997). The comparison results show that within a 
small magnitude of input uncertainty, there appears to be no apparent distinction 
between the capability of the hydrological models to adapt themselves to the error 
contaminated data, while, with increasing input uncertainty, the differences become 
larger and are quantified by the index MSII (a larger value of MSII indicates a worse 
model structure). As a final result, among the candidate models in this study,  
KW-GIUH is the most structurally stable model, followed by TOPMODEL, then SFM 
and the worst is the parameter-constrained SFM. For watershed management or 
planning, the methodology proposed here enables the selection of a hydrological 
model as a good reference. 
 
 
UNCERTAINTY QUANTIFICATION IN HYDROLOGICAL MODELS 
 
The performance of hydrological models is profoundly affected by the sources of 
uncertainty; briefly they are observed data, model calibration, and model structure. 
Among those, input data uncertainty occupies the greatest source of uncertainty and 
readily contaminates the other sources. In this study, prediction uncertainty, which 
comes from the three kinds of sources mentioned above, is classified into four 
categories: system uncertainty, entire uncertainty, inherent uncertainty, and structure 
uncertainty. The definitions and the procedures of recognizing and quantifying them 
are described below: 
 
 
System uncertainty 
 
Even if it is well known that a hydrological model is an approximation of the real 
phenomena based on the hydrological cycle, it still needs to be stressed that existing 
discrepancies are always between the model outcome and the observed data, no matter 
how precise and how perfectly calibrated the model is. This is the model predicting 
limitation beneath the hypothesis and the architecture of a hydrological model, and is 
defined as the system uncertainty in this study. 
 The system uncertainty is given by evaluating the discrepancy between the 
observed watershed response series and the model outcome during the process of 
model parameter calibration. The discrepancy is supposed to be the minimum value of 
the discrepancy to the possible occurrence of the event. It has often been observed that 
the goodness-of-fit between the observed data and the estimated data during the 
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calibration process is better than during the validation process. Due to this observation, 
the uncertainty occurring here denotes the predicting limitation of the model, since this 
is the best performance that the model can achieve. In agreement with this definition, it 
is clear that the uncertainty comes from the process of calibration and thus, the real 
uncertainty source is the data used for calibration. The index for quantifying the 
system uncertainty is defined as:  
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where Qo and Qb indicate the observed watershed response series and model outcome 
by using the best performing parameter set. n is the time step of the time series. SU 
elucidates the performance of the most suitable simulated outcomes. 
 This is a measure of the model performance during calibration, which denotes the 
predictive capability of the model. It has been demonstrated that the model 
performance against independent data not used for calibration is generally poorer than 
the performance achieved in the calibration situation (Refsgaard & Henriksen, 2004). 
As a result of this, the system uncertainty will be less than the entire uncertainty, 
which is described in the following. 
 
 
Entire uncertainty 
 
After calibrating the model parameters, the calibrated parameter space reflects its 
variance through the model structure and propagates to the response surface. The 
entire uncertainty is recognized by examining the discrepancy between observed 
watershed response data and model outcome using input data and the parameter sets in 
the calibrated parameter space. The entire uncertainty is the utmost uncertainty that a 
model could have under existing input uncertainty. The index for quantifying the entire 
uncertainty is defined as: 
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where Qe is the model outcome acquired by using a parameter set within the whole 
parameter space. 
 
 
Inherent uncertainty 
 
The inherent uncertainty represents the variability of the parameter space, which is 
determined according to the input uncertainty. This uncertainty is examined by 
calculating the discrepancy between model outcomes using parameter values within 
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the parameter space and the outcome with the best-fit parameter set. The index for 
quantifying the inherent uncertainty is defined as: 
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where Qe is calculated with a possible parameter set identified using other calibrated 
model outcomes. Thus, the discrepancy between Qb and Qe indicates the inevitable 
error in a model formulation. The observed watershed response data is not used here. 
The outcomes during the calibration process are used as comparison criteria to other 
outcomes which are generated using other parameter sets identified with other rainfall 
realizations with the same noise variance. 
 
 
Structure uncertainty—Model Structure Indication Index (MSII) 
 
In order to implement a dynamic view of the relationship among the system 
uncertainty, the inherent uncertainty and the entire uncertainty caused by input data 
uncertainty, the Nash-Sutcliffe efficiency is used to formulate a Model Structure 
Indicating Index (MSII, Chiang et al., 2005) defined as: 

SU
EUIUMSII −=   (4) 

The difference between the entire and the inherent uncertainty is used as the numerator 
in the equation, while the system uncertainty is used as a denominator. The numerator 
is expected to be a smaller value, while the model is considered to have a better chance 
of reproducing a more real watershed response series. It is a measure of the possibility 
of a model that adapts itself to the input uncertainty. The larger the magnitude the 
poorer the possibility that the model adapts itself to the error contaminated input data; 
this indicates that the calibrated parameter space lacks the capability to drive the model 
to simulate the watershed response well because of shortcomings in the structure of the 
hydrological model. 
 The numerator shows a measure of the adaptiveness of a hydrological model to 
uncertainty contained input data, while only the numerator is not enough to reveal the 
model structure; a component showing the model predictive capability is needed. The 
denominator of MSII indicates the effectiveness/goodness of the model calibration 
results and the predictive capability of the model, which enables the explicit reflection 
of the calibration scheme. The index interprets the variance caused by the calibration 
process and the model structure in a dimensionless form through the Nash-Sutcliffe 
efficiency. During the implementation of model evaluation, the system uncertainty, 
which is less than zero, is excluded from the calculation of MSII due to its 
insignificance. Hence the smaller value of the MSII represents better model structure, 
and the range of MSII is: ∞<≤ MSII0 . 
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ALGORITHM AND DATA APPLIED FOR UNCERTAINTY 
IDENTIFICATION 
 
Instead of sampling the parameter space directly, like GLUE does, this study generates 
the parameter space by introducing noise items into the input data with specified 
probability distributions. Here, a normal distribution with a mean equal to zero and 
standard deviation from 1.0 to 9.0 (mm h-1) is used to acquire the model parameter 
space and its outcomes under different input uncertainty. For each specified standard 
deviation of input uncertainty, 10 000 model outcomes were derived from the 
combinations of 100 rainfall series realizations and 100 fitted parameter sets through 
the model calibration. 
 The Yasu River basin, which is located in the Shiga prefecture of Japan, was used 
in this study. The main stream length of the Yasu River is about 65 km and the total 
basin area is approximately 387 km2. The rainfall data was collected from four rainfall-
gauging stations inside the Yasu River basin. The catchment average precipitation was 
calculated by using the Thiessen polygon method.  The rainfall record of the event used 
here was applied for rainfall realizations with noise, which were generated using a 
normal distribution with mean equal to zero and the specified standard deviation as 
input uncertainty. The water level data acquired at the Yasu gauging station has an 
hourly time step. A rating curve was used to transform the water levels to discharge. 
 
 
RESULTS 
 
The methodology described above is applied here for model performance comparisons 
of four hydrological models. They are TOPMODEL, KW-GIUH, SFM and a 
parameter-constrained SFM. The equations of SFM are: 
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where S = water storage height; re = effective rainfall intensity; q = runoff height; t = 
time step; and Tl = the lag-time. Parameter p is a constant, commonly the value is 0.6;  
f is the ratio of contribution area of the watershed which generates outflow; and RSA is 
accumulating saturated rainfall. A fully functional SFM is used with parameters Tl, f, 
and RSA. For an example of a poorer-structured model with comparison to the original 
SFM, a parameter-constrained SFM is manipulated by fixing the value of RSA to 0.0. 
 Figure 1 shows the calibration results of the models. The performance is evaluated 
by the Nash-Sutcliffe efficiency, which is summarized in Table 1. It can be seen that 
TOPMODEL is the best; and the parameter-constrained SFM is the worst. Figures 2–5 
show the entire, inherent and system uncertainty of each model. It can be seen that the 
entire uncertainty becomes larger as input uncertainty increases. It is always expected 
that the entire uncertainty will increase as input uncertainty increases; and the 
discrepancy between the entire and the inherent uncertainty has the same tendency. 
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The system uncertainty is supposed to be located in the middle, between the entire and 
the inherent uncertainty. The range between the entire and inherent uncertainty 
indicates the goodness of a model structure; that is the ability of the model to adapt 
itself to input data error. The broader range indicates that the model is less structurally 
sound. 
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Fig. 1 Model simulation results during calibration of SFM, TOPMODEL, KW-GIUH 
and parameter-constrained SFM. 

 
 
Table 1 Summary of the model performance during calibration. 
Model SFM TOPMODEL KW-GIUH Parameter-constrained SFM 
Nash-Sutcliffe 
efficiency 

0.795 0.864 0.773 0.454 
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Fig. 2 Entire, inherent and system uncertainty of SFM. 
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Fig. 3 Entire, inherent and system uncertainty of TOPMODEL. 
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Fig. 4 Entire, inherent and system uncertainty of KW-GIUH. 
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Fig. 5 Entire, inherent and system uncertainty of parameter-constrained SFM. 
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 Figure 6 shows the MSII of each model. Except for the parameter-constrained SFM, 
there is no apparent distinction between the other three candidate models within a small 
magnitude of the input uncertainty. However, with increasing input uncertainty, KW-
GIUH becomes structurally more stable than SFM and TOPMODEL in this study. 
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Fig. 6 MSII of TOPMODEL, SFM, parameter-constrained SFM and KW-GIUH. 

 
 
CONCLUSIONS 
 
Although TOPMODEL performs best during the calibration process, when the input 
uncertainty increases the capability of TOPMODEL to adapt itself to the error 
contaminated data fails. This result reveals a very interesting point; that is, even if the 
performance of a model during calibration is better than that of other models, it may 
not be the most stable model while input uncertainty exists. KW-GIUH does not 
perform as well as TOPMODEL does with small input uncertainty, but with increasing 
input uncertainty, the capability of KW-GIUH to adapt itself to the error contaminated 
data is better than TOPMODEL. For SFM, with small magnitude input uncertainty, the 
model performance is not so different from TOPMODEL. However, the steep slope of 
MSII in Fig. 6 indicates that it lacks this ability at high input uncertainty levels. 
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