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Abstract  The parameters of a SVAT model (VIP) are explored by a 
multi-objective likelihood measure using the Generalized Likelihood 
Uncertainty Estimation (GLUE) framework based on field data collec-
ted in the North China Plain during the winter wheat growing season in 
2001. Agreement indexes of latent, sensible, ground heat and CO2 
fluxes and radiometric surface temperature between the observed and 
the modelled data are used to evaluate the model performance, in which 
13 parameters were selected for calibration and model uncertainty esti-
mation. Although the single objective approach effectively constrains 
the corresponding model response, the multiple objective technique, 
including both fluxes and state variables, presents a more efficient 
constraint. The outstanding effect of surface radiometric temperature 
for calibration suggests that thermal remote sensing might be a 
promising tool for distributed SVAT model calibration and evaluation 
over large areas. It is found that, although the model appears to have a 
serious equifinality problem, the interactions and compensation effects 
between the parameters are not strong, with both linear and nonlinear 
correlation coefficients being small. Sensitivity analyses using both 
scatter plots and partial correlation coefficients show that model 
responses are sensitive to half of 13 parameters.  
Key words  GLUE; parameter calibration; SVAT model; uncertainty  

 
 
INTRODUCTION 
 
The increased atmospheric CO2 concentration and induced global warming are 
expected to seriously affect many aspects of terrestrial ecosystems through the rate and 
magnitude of change in climate means and extremes. The changes in the ecosystems in 
turn will significantly influence the climate through their effects on the partitioning of 
energy into latent and sensible heat fluxes, as well as carbon fluxes on the land surface. 
Physical modelling of Soil–Vegetation–Atmosphere Transfer (SVAT) processes is an 
indispensable tool for study of these interactions between atmospheric CO2, climate, 
land use, and terrestrial carbon pools and to predict ecosystem effects under different 
scenarios. 
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 SVAT models are designed to predict a range of land surface fluxes (e.g. energy 
fluxes, carbon flux, runoff, evapotranspiration) and surface states (e.g. surface temp-
erature, soil moisture), most of which are measurable at both the patch scale and the 
regional scale by tower instruments and remote sensing, respectively. However, since 
the limited data available for calibration may deteriorate the parameter robustness, 
SVAT models are generally deemed overparameterization. By adjusting the parameter 
values to achieve an acceptable match with observations, many distinct parameter sets 
over a wide range of parameter space can simulate behavioural fits, resulting in so-
called equifinality (Beven & Binley, 1992) and giving rise to significant prediction 
uncertainty. The uncertainty of SVAT models may stem from model structure, scale 
inconsistency and boundary conditions. To reduce parameter uncertainty, model 
parameter calibration is necessary. Usually a single criterion is difficult to constrain 
the multiple model output variables (Gupta et al., 1999). As an alternative, the SVAT 
model should theoretically apply as more observed variables as possible to constrain 
the equifinality problem via the framework of multi-objective methodology.  
 With recent investigations on various aspects of SVAT processes (Avissar, 1998), 
there have been many documented studies to analyse the model uncertainties through 
both the single and multi-criterion for various kinds of SVAT models (Franks & Beven, 
1998; Grieb et al., 1999; Gupta et al., 1999; Mo & Beven, 2004). Since different SVAT 
models have their own special treatments of land surface processes, it is certain that with 
different parameters involved, the model uncertainty performances vary. It is therefore 
scientifically meaningful to identify the parameter uncertainty for each of the SVAT 
models, in order to assess the model confidence, to improve the parameterization 
schemes and find some common features in the model uncertainty if they exist. 
 In this paper, parameter calibration and uncertainty analysis is carried out based on 
a SVAT model, known as VIP (Vegetation Interface Process model), originated from 
Mo & Liu (2001) and Mo & Beven (2004). The distinguishing characteristics of the 
model are the solution of the energy balance equations and the stomatal conductance–
photosynthesis relationship. In detail, the prognostic equations of canopy and the soil 
surface energy balance take into account the heat storage terms of vegetation and 
surface soil layer. Also, a stomatal conductance scheme including a leaf water poten-
tial-related stress factor is used to update the popular stomatal conductance–photosyn-
thesis models. The model parameters are calibrated with the multi-objective likelihood 
measure under the framework of Generalized Likelihood Uncertainty Estimation 
(GLUE), by which the parameter uncertainty and interactions between parameters and 
model responses are investigated.  
 
 
DESCRIPTION OF THE MODEL 
 
The VIP model is designed to simulate the canopy carbon assimilation, radiation 
absorption, energy partitioning into heat fluxes and soil moisture and thermal 
dynamics. It consists of both vegetation and soil modules. In the vegetation module, 
canopy is divided into sunlit and shaded leave groups for energy partitioning and 
photosynthesis. In the soil module, soil moisture and thermal dynamics are described 
by Richards’ equation considering thermal gradient induced water vapour flow, and 
the thermal diffusion equation for soil temperature, respectively.  
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Prognostic equations 
 
The prognostic equations for energy balances at canopy and underneath soil surface 
are, respectively: 
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where Cv is the bulk heat capacity per unit area of canopy (J m-2 K-1), Cm1 is the bulk 
heat capacity per unit area of the upper soil layer (J m-2 K-1), Tg and Tv are the soil 
surface and canopy temperature (K) respectively, L is the latent heat of evaporation  
(J kg-1) and G is the soil heat flux (W m-2). Rnv and Rng are the absorbed net radiation 
fluxes (W m-2) by canopy and soil, Ev and Eg are vegetation transpiration (kg m-2 s-1) 
and soil evaporation (kg m-2 s-1) fluxes, respectively. Hv and Hg are sensible heat fluxes 
(W m-2) from vegetation and soil, respectively. 
 The respective prognostic equations for soil moisture and thermal regimes are:  
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where Cm is the soil heat capacity (J m-3 K-1), λ is the soil thermal conductivity (J m-1 s-1), 
ϑ is the soil moisture, ψ is the soil water potential (m), Ts is the soil temperature (K), 
Kw is the soil hydraulic conductivity (m s-1), DT is the diffusion coefficient for water 
vapour (m2 s-1 K-1) in the soil, Su(z, t) is the sink term of root uptake (s-1). Here ψ and 
Kw are parameterized with the Clapp & Hornberger (1978) equations using the 
parameter of saturated hydraulic conductivity, Kwsat (m s-1). 
 
 
Carbon flux 
 
The CO2 flux (Fc, µmol m-2 s-1) above canopy is estimated as the sum of canopy net 
photosynthesis (Anc), plant respiration (Rplant, µmol m-2 s-1) and soil respiration (Rsoil, 
µmol m-2 s-1), namely: 

soilplantncc RRAF −−=   (5) 

The canopy photosynthesis estimation is based on Farquhar’s biochemical model 
(Farquhar et al., 1980), in which the Rubisco capacity Vcmax is assumed decreasing 
exponentially with cumulative leaf area index (LAI) from the top of canopy, namely: 

)exp(0maxmax LAIKVV Ncc −=  (6) 

where Vcmax0 is the value of Vcmax at the canopy top, and KN is the extinction 
coefficient.  
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Radiometric temperature 
 
The canopy and ground surface temperature predicted by the model is chosen for 
calculation of the composite radiometric temperature, expressed as: 

4/144 ])1([ ggfvcfr TTT εσ−+εσ=  (7) 

where εc and εg are the canopy and ground emissivities, respectively, set as 0.98 and 
0.95, σf is the canopy cover fraction, Tr is the radiometric surface temperature (K) 
monitored by an infrared thermometer. 
 
 
Canopy conductance 
 
Following Tuzet et al. (2003), we use the following relationship between stomatal 
conductance and carbon assimilation rate adopted, expressed as:  
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where cs is the CO2 concentration at the leaf surface (Pa), ψv is the leaf water potential 
(m), m is an empirical coefficient. ψc is the value of water potential at which total 
stomatal closure occurs, a value of –250 m is adopted (Federer, 1979).  
 The water flux from root zone to leaf, Jw (kg m-2 s-1), is given by: 
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where ρw is the water density (kg m-3), ψs is the soil water potential in the root zone 
(m), rp is the plant hydraulic resistance (s), rhs is the soil hydraulic resistance (s). Under 
steady conditions, Jw is equal to transpiration rate Ev. 
 

 
Wind profile and soil resistance for evaporation  
 
For a horizontally homogeneous canopy, wind speed is assumed to decrease in the 
canopy as an exponential function: 

))1(exp()()(
c

ec h
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where u is the wind speed (s m-1), hc is the canopy height (m), we is the empirical 
coefficient, z is the height above ground (m). 
 Soil resistance for water vapour diffusion from soil pores to the above near surface 
air is parameterized using the relationship of Sellers et al. (1992): 
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where rs is the soil resistance (m s-1), ϑ1 and ϑs are the surface thin layer and the 
saturated moisture contents respectively, and a1 and b1 are the empirical coefficients. 



Xingguo Mo et al. 
 
 

 

168 

SITE AND DATA 
 
The data were collected at a winter wheat field in Shunyi (SY, 116°33′E, 40°09′N), 
Beijing in 2001. The soil texture is silty loam with a granular structure. Total soil organic 
carbon concentration is 0.36% and dry bulk density of the root layer is about 1.3 g cm-3. 
 The observation site is flat with a fetch more than 500 m. Microclimate variables 
of wind speed, and wet and dry bulb temperatures at 1 and 2 m above the ground were 
scanned every 15 s and output as 5 min averages with resolutions of 0.1 m s-1 for wind 
speed and 0.1 K for air temperature, respectively. Global and reflected shortwave 
radiation, net radiation and soil heat fluxes were also measured. Radiometric surface 
temperature above 2 m of the canopy was measured with 45°-inclination angle by an 
infrared thermometer. Resolution of the infrared thermometer is 0.1 K. Turbulent 
fluxes of CO2, latent and sensible heat fluxes were measured by the eddy covariance 
technique, in which CO2 and water vapour fluxes were gathered with an open-path 
CO2/H2O gas analyzer (Li-7500, LI-COR, USA). Wind and temperature variances 
were also gathered at the same height by the sonic anemometer (DA600，Kaijo, 
Japan) at a 20 Hz sampling rate. 
 
 
MULTI-OBJECTIVE LIKELIHOOD AND THE PRIOR PARAMETER RANGES 
 
Multi-objective likelihood 
 
Multi-objective calibration is based on the minimization of a set of model performance 
fitness criteria in which each one corresponds to a model output variable. The 
measurements of CO2, heat flux, surface temperature, soil moisture and surface albedo 
can be used to constrain the parameter values based on the multi-objective approach 
theory. In this case, 13 parameters are conditioned with five model responses against 
observations under the framework of GLUE methodology (Beven & Binley, 1992). 
The five variables are CO2 flux, latent, sensible and soil heat fluxes, as well as infrared 
radiometric surface temperature, respectively. The agreement index (R2, Willmott, 
1981) is employed as an objective function for model performance evaluation and the 
likelihood measure for GLUE analysis: 
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where Y is the predicted variable, ζ is the parameter set, and O is the observed variable. 
The average is noted with an over bar. 
 The likelihood measure including all single variable likelihood measure is updated 
using the Bayesian equation as: 
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where Li (i = 1, 5) are the likelihood measures of the CO2 flux, latent, sensible and soil heat 
fluxes, infrared radiometric surface temperature, respectively, and C is the scaling factor. 
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Table 1 Model input parameters sampled for Monte–Carlo simulations. 

Parameter Definition Priori range 
Vcmax Carboxylation rate limited by Rubisco activity (µmol C m-2s-1) 10–110 
m Coefficient of stomatal conductance / photosynthesis 

relationship 
2–14 

α Quantum efficiency (µmol C/µmol photon) 0.05–0.5 
KN Extinction coefficient of leaf nitrogen in the canopy 0.1–1.5 
λs Thermal conductivity of soil solid (J m-1 s-1) 5 × 10-6–150 × 10-6 
Kwsat Saturated soil hydraulic conductivity (m s-1) 0.05–2.0 
rp Plant hydraulic resistance (s) 0.5 × 108–50 × 108 
Chs Heat capacity of soil solid (J kg-1) 400–1200 
zos Roughness of soil surface (m) 0.001–0.01 
cr Coefficient of root profile 0.1–3 
we Wind speed extinction coefficient in the canopy 0.5–4 
a1 Coefficient of the soil resistance for water vapour diffusion 4–12 
b1 Coefficient of the soil resistance for water vapour diffusion 2–6 
 
 
Parameters selected for sensitivity analysis  
 
Thirteen main parameters, related to the processes of photosynthesis and available 
energy partitioning into sensible and latent heat fluxes, are selected: seven related to 
vegetation and six related to soil heat and moisture. These parameters are also closely 
related to the CO2 flux and turbulent fluxes directly or indirectly, and are shown in 
Table 1. Ranges of the parameter values varied in the Monte Carlo sampling procedure 
in GLUE are also listed in Table 1.  
 Prior ranges of the selected parameter values are given according to their possible 
spaces, which are set a bit wider in this study than those found in the literature. 
Random sets of parameters (60 000) were sampled from uniform distributions across 
the specified ranges. 
 
 
RESULTS 
 
Model performance with multi-objective conditioning 
 
The model performances are shown in Table 2, in which 524 parameter sets from 
60 000 are selected as behaviours (0.9%). The agreement of net radiation with 
observations (not shown in Table 2) is the most satisfactory with RMSE of 13 W m-2 
relative to LE and H. The best fit R2 values for surface temperature are as high as 0.99. 
The RMSE values are similar for both latent and sensible heat fluxes, whereas RMSE 
of ground heat flux is higher. The RMSE of soil heat flux is close to the deviation of 
energy budget (46 W m-2). From the observations of ground heat flux, it can be seen 
that the values of G measured by heat plates buried under the crop row and inter-row 
were noticeably different during the daytime, which is probably the main reason 
resulting in the deviation of the energy budget closure. Generally, the performance of 
our model, with R2 values being greater than 0.8, is quite satisfactory, which is 
comparable with other models’ efficiency (e.g. Leuning et al., 1998; Anderson et al., 
2000; Zhan & Kustas, 2001; Arora, 2003; Ogee et al., 2003). 
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Table 2 Model performances of the best fit for SY data set.  

 FC LE H G Tr 
 R2 RMSE 

(µmol CO2 
m-2 s-1) 

R2 RMSE 
(W m-2) 

R2 RMSE 
(W m-2) 

R2 RMSE
W m-2 

R2 RMSE
(K) 

Best fit 0.97 2.3 0.94 34 0.96 24 0.82 52 0.99 2.2 
Behaviours 0.90 3.5 0.90 43 0.93 33 0.79 66 0.97 3.1 
 
 
Multiple variables conditioning and equifinality 
 
Scatter plots of the 13 parameters with likelihood measure, which can be regarded as 
projections of high dimensional parameter space onto a single axis, are presented in 
Fig. 1. It can be seen from the scatter plots that the better fits to the model response are 
presented in a wide range of the parameter space, even for the most sensitive param-
eters. This reinforces the concept of equifinality of model parameter sets in producing 
behavioural simulations in general view. 
 More than four parameters are significantly constrained and the behavioural values 
are aggregated around a certain zone in the prior set space. In detail, Vcmax with the top 
likelihood measures is about 90 µmol CO2 m-2 s-1 which is in agreement with the docu-
mented measured value for winter wheat as 93 µmol m-2 s-1 (used by S. B Verma’s 
group, cited by Arora, 2003). The best-fit value of parameter m is around 8. Leaf 
nitrogen content extinction coefficient in canopy KN is at the value of 0.5, near the field 
observed value of 0.43 reported by Dreccer et al. (2000). λs is directly related with 
ground heat flux and the best fit values are located around the left side with a sharp 
pattern in the posterior range. However, the parameters α, we, rp, Kwsat, Chs, Cr, zos, a1 
and b1 are not noticeably constrained by the observations. 
 
 
Interactions and compensations of the parameters  
 
Generally, as pointed by Beven (2000), in a physically process-based model, the 
parameters should be specified theoretically. However, due to model structure and data 
availability, as an alternative, the specification of parameters relies on calibration or 
empirical relationships. So the calibrated parameter values are related to the model 
physical structure and errors in forcing data and measurement. As a consequence, they 
may be less physically “correct” with high correlation coefficients between parameters.  
 Calculating a linear Pearson correlation coefficient can most easily test the 
interactions and compensations between parameters. A Spearman rank correlation 
coefficient can additionally be used to test for nonlinear relationships (e.g. Wagener & 
Wheater, 2005). The significant values of correlation coefficient between parameters 
mean that the two relevant parameter values are compensating for each other to some 
extent during the calibrating process. Generally, neither a linear (Table 3(a)) nor a 
nonlinear (Table 3(b)) relationship exists between parameters with about 5.1~7.7% of 
78 coefficient values being only larger than or equal to 0.2 (the bold values), indicating 
that the interactions and compensations between parameters are weak.   
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Fig. 1 Scatter plots of the 13 parameters with likelihood measures at SY. The x-axis is 
the range of parameter and y-axis is the normalized likelihood. 
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Table 3 Correlation coefficients of the 13 selected parameters derived from the behavioral values. 

 Vcmax m α KN Kwsat λs rp Chs zos Cr we a1 b1 
(a) Pearson Correlation coefficients 
Vcmax 1 –0.10 –0.05 0.42   0.00   0.00 –0.12 –0.08 –0.04   0.02   0.01   0.11   0.06 
m  1 –0.11 0.16   0.04   0.03   0.07   0.04 –0.04   0.06 –0.01   0.06 –0.07 
α   1 0.24 –0.02 –0.03   0.01   0.02   0.02 –0.11   0.02   0.02   0.00 
KN    1   0.01 –0.15 –0.03 –0.04 –0.02 –0.09 –0.04   0.04   0.00 
Kwsat     1   0.01 –0.12   0.00   0.06 –0.02   0.00   0.08   0.06 
λs        1 –0.20 –0.01 –0.03 –0.06   0.14 –0.13   0.03 
rp         1   0.05   0.01 –0.05 –0.17 –0.30   0.09 
Chs          1 –0.02 –0.04 –0.01 –0.01 –0.02 
zos         1 –0.02   0.00   0.04   0.00 
Cr            1 –0.03   0.00   0.02 
we             1 –0.10 –0.02 
a1              1   0.03 
b1               1 
(b) Spearman Rank correlation coefficients 
Vcmax 1 –0.09 –0.03 0.46   0.06   0.00 –0.13   0.00 –0.03 –0.03 –0.12 0.05 –0.03 
m    1 –0.17 0.15 –0.04 –0.09   0.10   0.06 –0.01   0.00 –0.01 0.23 –0.04 
α   1 0.26   0.02   0.01 –0.13 –0.07   0.01 –0.01   0.01 0.12   0.02 
KN    1   0.05 –0.09 –0.10 –0.02 –0.03 –0.02   0.04 0.04   0.00 
Kwsat     1   0.03   0.01 –0.01   0.04 –0.02 –0.01 –0.05   0.08 
λs      1 –0.08 –0.01 –0.03   0.03   0.11 –0.02   0.06 
rp       1   0.03   0.00 –0.03   0.22 –0.34   0.09 
Chs        1   0.05   0.03   0.05 0.08   0.03 
zos           1   0.02   0.00 0.02   0.01 
Cr          1   0.05 –0.01 –0.02 
we             1 –0.20   0.07 
a1            1   0.09 
b1               1 
 
 
 
 A slightly stronger correlation was found between parameter Vcmax and KN with 
correlation coefficient of 0.46, being the only one over 0.4. From model running 
experiences we know that the sensitivities of parameters to the different model 
responses are different. Parameters Vcmax and KN are more sensitive to CO2 flux, 
whereas most of the other parameters are more sensitive to heat fluxes, hence for 
parameters belonging to the same group, the compensation and interaction will be 
expected to be more significant.  
 There is no obvious difference between correlation coefficients and Spearman rank 
correlation coefficients. A slightly stronger nonlinear dependence than linear 
dependence occurs in two parameter pairs, a1~we and a1~m, with the rank correlation 
coefficient being significantly larger than the linear correlation coefficient. However 
these relationships shows the significant interactions of energy exchanges between the 
canopy air space and underneath soil surface.  
 From the above correlation analysis, it seems that the interaction and compensa-
tion between parameters are not very obvious.  
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Sensitivity analysis 
 
Correlation analysis on the resulting data set can be used to identify the sensitivity of 
the output variable to the model parameters. If a parameter is highly correlated with 
the output variable of interest, then the output is sensitive to this parameter. However, 
neither the Pearson correlation coefficient nor the Spearman Rank correlation, 
coefficient as mentioned above, can clearly identify the sensitivity of output to the 
model parameters if the number of the parameters is larger than one. The reason is that 
multiple parameters affect the output simultaneously. The partial correlation 
coefficient (PCC) quantifies the amount of residual variation accounted for by 
individual parameter variation after the effects of all other parameters have been 
statistically removed (Saltelli et al., 2000; Levy & Mackay, 2003), and hence is used 
here as the sensitivity index. 
 The PCC between the parameter and the combined likelihood L are shown in 
Table 4. The order of the significance of the sensitivity of the model response to the 
parameters are as following:  a1 > we > λs > Vcmax  > KN > b1. For those parameters, such 
as α, rp, Kwsat, zos, Chs, m and Cr, the sensitivity is quite insignificant as the PCCs are all 
< 0.3. The results on λs, Vcmax and KN are in agreement with the scatter plots (Fig. 1). 
As the sensitivities of parameters to the corresponding model responses are different, it 
is usually difficult to achieve an effective calibration for all the parameters with a 
traditional single objective function, confirming the necessity of multi-objective 
calibration. 
 
 
Table 4 Partial correlation coefficients (PCC) of the 13 selected parameters with the likelihood measure. 

 Vcmax m α KN Kwsat λs rp Chs zos Cr we a1 b1 

PCC 0.65 0.01 0.28 0.42 0.05 0.73 0.08 0.02 0.05 0 0.84 0.92 0.41 
 
 
 
Evaluation of multi-objective calibrations 
 
The contribution of each variable to the multi-objective likelihood measure is different. 
For a single objective likelihood measure denoted by {}, it usually gives good 
calibrated results of the same model response variable; for example, {H} is good for 
model predicted sensible heat flux. Combinations of the objective likelihood measures 
show quite different Pearson correlation coefficients with the likelihood of the five 
variables presented in Fig. 2. The constraining effects of the five objectives are 
different. For single objective functions, surface radiometric temperature leads to the 
highest correlation coefficient with the 5-objective likelihood. For the 2-objective 
functions, {H,Tr} reaches the highest efficiency with the second and third being 
{Fc,Tr} and {LE,Tr}, respectively. The combinations of two or more fluxes as 
likelihood {LE, H} and {LE, H, Fc} give a noticeably poorer efficiency than that of 
one flux and temperature combination. Thus it can be concluded that combinations of 
flux and state variable are more efficient for parameter constraining.  
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Fig. 2 The correlation of the contributions of five variables to the multi-objective 
likelihood measure with the contributions of the different number of variables to the 
multi-objective likelihood measure. 
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Fig. 3 The ratios of RMSE by 1-, 2-, 3- and 4-objective likelihood measures to the  
5-objective likelihood measure. 

 
 
 Figure 3 shows the ratios of RMSE by 1-, 2-, 3- and 4-objective likelihood 
measures to the 5-objective likelihood measure. The effects of {LE, H, G}, {Fc, Tr}, 
{LE, H, G, Tr} are close to the 5-objective likelihood measure {LE, H, Fc, Tr, G}. It is 
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easy to see that a multi-objective likelihood measure with one flux and one state 
variable can result in quite close effect to that with all the five objectives in this study. 
Gupta et al. (1999) also showed some similar results. The reason is that the state 
variables are more related to soil, vegetation heat and water capacities, whereas 
turbulent fluxes are more related to aerodynamic processes, giving rise to a higher 
calibration efficiency via combination of one flux and one state variable. On the other 
hand, the outstanding effect of surface radiometric temperature for calibration 
indicates that thermal remote sensing be a promising tool for distributed SVAT model 
calibration and evaluation over large areas. 
 
 
SUMMARY AND CONCLUSIONS 
 
In this paper, the multi-objective technique under the framework of GLUE is chosen to 
assimilate the observed land surface fluxes and state variables for optimal multiple 
parameter specification and the parameters generality exploration for a SVAT model 
(VIP).  
 Agreement indexes of latent, sensible, ground heat and CO2 fluxes and radiometric 
surface temperature between observed and model responses are used to calculate the 
multi-objective likelihood, in which 13 parameters are selected for calibration and 
evaluation of the model uncertainty. The results show that although a single objective 
effectively constrains the relevant model response, the multiple objectives including 
both fluxes and state variables do so more efficiently. The outstanding effect of surface 
radiometric temperature for calibration suggests that thermal remote sensing might be 
a promising tool for distributed SVAT model calibration and evaluation over large 
areas. 
 Using both the multivariate linear regression and nonlinear Spearman rank 
correlation analysis, it is shown that the VIP model also appears to have a serious 
equifinality problem similar to other SVAT models. However, the interaction and 
compensation effects of parameters are weak.  
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