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Abstract The aim of this paper is the estimation of uncertainty in an online 
data assimilation model applied to a sequential, multiple-step-ahead flood 
forecasting system. The main aim of the forecasting system under considera-
tion is the derivation of real-time forecasts of the water levels with the 
maximum possible lead-time. This is achieved through a two-level, sequential 
data assimilation procedure. In order to extend the maximum lead-time, we 
incorporate the forecasts obtained from the earlier stages of the forecasting 
system, both rainfall-water level and water level routing processes. The 
updating of the gain of each of the subsystems introduces nonlinearity into the 
system performance. The Generalized Likelihood Uncertainty Estimation 
(GLUE) technique is used to estimate the uncertainty of model predictions in 
the decomposed online forecasting system. 
Key words  flood forecasting; Generalized Likelihood Uncertainty Estimation;  
Severn catchment; uncertainty propagation 

 
 
INTRODUCTION 
 
The estimation of the uncertainty of the output from an environmental model involves 
a difficult task in formulating the estimation problem. This includes the choice of the 
parameters of the model and its input variables, which mostly influence the uncertainty 
of the output and which are specified during the calibration stage of the model. Usually 
the choice is related to a statistical model of the residual error, determined during 
calibration, under the implicit assumption that the model is correct (for a discussion of 
some of the implications of this approach, see Beven, 2005).  
 One of the ways to check qualitatively the robustness of model predictions is by 
evaluation of a wide range of events. When the model uncertainty ranges (confidence 
limits) envelope most of the observations, the model uncertainty is well estimated. 
When many of the observed variables lie outside the specified confidence limits, this 
indicates that the parameter and input variability were assumed as too small or that the 
model structural error is too great. On the other hand, if the uncertainty ranges are too 
wide, the model loses its predictive power and is much less valuable to the user.  
 In hydrological modelling, it is difficult to specify a general prediction error 
structure. One of the possible solutions consists of the specification of behavioural 
parameter sets associated with an implicit error structure, assumed to be similar in 
prediction to that in calibration. This approach requires a subjective choice of criteria 
for the definition of a behavioural model (see Beven, 2005, for a formal approach 
based on a concept of effective observational error). Another approach consists of 
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inflating the variance of predictions as a way of reflecting the reduced information 
content of the residual errors when the error structure is not clearly defined 
(Romanowicz & Beven, 2005). The uncertainty of input variables, i.e. rainfall and/or 
inflow, also influences the uncertainty of the predictions. However, proper accounting 
for this uncertainty requires introducing a statistical model for the input 
(Krzysztofowicz, 2002). 
 When a linear model is used to describe the process dynamics, the uncertainty 
propagation can be estimated analytically (Papoulis, 1965). The online adaptive 
sequential system for flood forecasting described in detail in Romanowicz et al. (2004) 
consists of interconnected one-dimensional (1-D) modules describing the dynamics of 
the rainfall–flow and flow routing processes in a catchment. It has linear dynamics, but 
it applies nonlinear gain for the updating of the predictions (Young, 2002), which 
introduces nonlinearity to the system. Two descriptions of this sequential system are 
possible. The first one consists of a Kalman filter formulation (Kalman, 1960) of the 
entire system and the second uses the decomposition of a system into sequentially 
connected modules, each of reduced dimensionality.  
 As the Kalman filter assumes that the input variables are deterministic, only the 
whole system formulation properly propagates uncertainty of the internal nodes. 
However, when the dimension of the system is large, the uncertainty analysis of 
sequentially connected modules may be more suitable. In this paper we present the 
estimation of uncertainty propagation in the modular (decomposed) system. The 
information about the input uncertainty for the middle stages of the forecasting system 
can be estimated from the sub-modules. We shall show here how this information may 
be used in the evaluation of prediction uncertainty of the online forecasting system for 
the River Severn, UK.  
 
 
METHODOLOGY 
 
The forecasting system applied in this study consists of a set of nonlinear static and 
linear dynamic Stochastic Transfer Function (STF) based modules, with sequentially 
updated nonlinear gain parameters, following the Kalman filter methodology 
introduced by Young (2002). The only assumption required for the application of 
Kalman filter to recursive data assimilation within the flood forecasting problem is the 
assumption of the linear process dynamics. This is ensured by the introduction of the 
nonlinear transformation of the rainfall into effective rainfall, thus assuming the 
process nonlinearity can be expressed by the input nonlinearity (Young, 2003). The 
initial application of this methodology to flow forecasting in the River Severn has been 
described in Romanowicz et al. (2004). The present case study considers a refined 
implementation based on the modelling and forecasting of water level (stage) 
measurements instead of flows. This approach avoids the errors introduced by 
conversion of levels to flow and directly yields the forecasts of water levels that are 
normally required for flood forecasting and warning. In addition, it enables gauging 
stations without well-defined rating curves to be used in data assimilation, without 
introduction of additional error. The error related to the rating curve varies between 
sites, reaching, for example, up to 30% of the maximum flow at Buildwas, River 
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Severn, used as a case study in this paper. Additionally, the rating curve often requires 
re-calibration after major flood events. 
 At each time step, recorded water level information is available at the Abermule, 
Meifod, Montford and Buildwas sites (Fig. 1). These levels can be used to update the 
gains in the transfer functions for each module of the forecasting system. It can be 
assumed that these measurements have small error and can be used directly in the 
Kalman filter algorithm. For forecasts at longer lead times, however, the forecasts at 
upstream sites, that form the inputs for the downstream routing transfer functions will 
be uncertain, and subject to the nonlinearities associated with the updating gains. Thus, 
an alternative methodology is required to cascade these uncertainties through the 
forecasting system. In this paper we apply the Generalised Likelihood Uncertainty 
Estimation (GLUE) technique (Beven & Binley, 1992) to estimate the uncertainty of 
online model predictions.  
 
 

Cefn Coch 

Dollyd  BUILDW AS

ABERM ULE 

M ONTFORD 

M EIFOD 

Vyrnwy 

Pen y Coed 

 
Fig. 1 Schematic presentation of the online forecasting system for the River Severn, 
UK, upstream of Buildwas. 

 
 
 GLUE is based on Monte Carlo realizations of the model parameters and 
(possibly) input variables; each realisation is associated with a likelihood weight to 
account for both prediction and parameter/structure related errors (Romanowicz & 
Beven, 2005). The STF parameter distributions and covariance estimates are assumed 
known from calibration of each transfer function. These parameters can be sampled 
directly from the identified Gaussian covariance structure. The nonlinear gain and 
error transformation associated with each STF involves additional hyper-parameters. 
In calibration, these are optimised, but without a direct estimate of their uncertainties. 
In the GLUE methodology, to propagate the joint effect of the parameter and hyper-
parameter uncertainties down through the system, each realisation is associated with a 
likelihood weight. These weights are also determined in calibration using the following 
form of likelihood measure ( )D,zif θ  for the ith parameter set θi; i = 1, ..., n:  

( ) ( )( ) 2

1

2-exp σ






 −θ=θ ∑
=

/zD,yD,z
T

t
tisimt,if   (1) 

Where ,1 ,{ ,..., }t t t mz z=z  denotes the vector of observations at time t, D is the input and 
( )D,y isimt, θ  is a vector of simulated water levels. 

 The variance σ2 is a scaling parameter reflecting our lack of knowledge of the true 
information content of the residuals in constraining the uncertainty in the model 
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predictions. One possible form for this scaling is to take the sum of the variances of the 
errors between observed and simulated flows over all behavioural model for each time 
step as an estimate, such that: 

( )( )2
,

1
var

T

t sim t
t

σ
=

= −∑ y θ z  (2) 

This will increase the dispersion of the resulting posterior parameter distribution 
(relative to a formal likelihood measure) to account for the predictive model 
uncertainty without making additional assumptions about the model error structure. 
The multiple realisations are then used to forecast likelihood weighted cumulative 
distributions of predictions for lead times beyond the time for which measured inputs 
are available. 
 
 
THE CASE STUDY: SEQUENTIAL MODEL FOR THE RIVER SEVERN 
REACH FROM ABERMULE TO BUILDWAS 
 
As the case study we use the 120 km long reach of the River Severn, UK, between 
Abermule and Buildwas. The sequential updating model, described in detail in 
Romanowicz et al. (2004), consists of four STF sub-models as shown in Fig. 1. Here, 
the RIV (Refined Instrumental Variable) algorithm from the CAPTAIN 
(http://www.es.lancs.ac.uk/cres/captain) toolbox for MatlabTM and the associated Data 
Based Mechanistic (DBM) statistical modelling concepts are used to identify the order 
of the STF models and to estimate the associated parameters (Young, 2002). Using the 
DBM approach ensured that the identified models efficiently reflect the information 
content of the calibration data, so that the possibility of over-parameterization and 
associated poor identifiability is avoided. 
 The first two sub-models are rainfall–stage models. One model estimates the stage 
variable at Abermule, on the River Severn. The other is derived for the stage at 
Meifod, on the River Vyrnwy, a major Severn tributary that joins the Severn at Crew 
Green, above Montford. These models use the rainfall measurements from four sites in 
the Upper Severn: Cefn Coch, Dollyd, Pen y Coed and Vyrnwy. Both these models 
have 5 h delay, which means that they can provide forecasts 5 h ahead. Both models 
also apply nonlinear transformation of rainfall into effective rainfall (Young, 2002) to 
account for the changing antecedent conditions and varying storage capacity of the 
catchment.  
 The next sub-model is used to derive online forecasts of water levels at Montford, 
which are based on the water levels at Abermule and Meifod. This model is first order 
and has an 11 h delay. Together with the 5-h ahead forecast from the rainfall–water 
level models, we get 16-h ahead forecasts at Montford. The last sub-model gives water 
level forecasts at Buildwas. All the models apply both error transformation and online 
gain and variance updating to account for the changes of system response over time 
and heteroscedastic errors. These are controlled by a number of hyper-parameters 
which are determined during model calibration (Young, 2002; Romanowicz et al., 
2004). An online parameter updating procedure is built into the system using real-time 
recursive estimation, Young, (1984). The STF models were developed using the 
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autumn 1998 flood events (calibration stage) and autumn 2000 flood events were used 
for the validation of the models. 
 
 
UNCERTAINTY ESTIMATION OF THE FORECASTS OF THE 
SEQUENTIAL MODEL 
 
The parameters of the sequential model consist of 14 STF model parameters, estimated 
from the data during the derivation of the STF model structures for each sub-model 
and 15 hyper-parameters, covariance estimates of the state space KF form of the STF 
models and the covariance estimates of the random walk (RW) models (Papoulis, 
1965) applied to the recursive updating of the gain and heteroscedastic variance of 
each STF model. It was found that the hyper-parameters, which only influence the 
statistical properties of the data assimilation and not the model dynamics, have little 
effect on the quality of the forecasts when the model was run with random samples of 
the hyper-parameters drawn from ranges of values (e.g. Fig. 2, for the Abermule 
rainfall–stage STF model). Here the hyper-parameters nvr1 and nvr2 are the 
covariance estimates of the state space form of STF Abermule model; q1 and q2 are 
the variances used in gain and variance updating. Allowing the STF model parameter 
values to vary, within the ranges determined by the KF covariance matrix determined 
during calibration, has a much greater effect on the model outcomes.  
 
 

 
Fig. 2 Variation of 2

TR criteria for 1000 simulations with hyper-parameters changing 
uniformly; nvr1 and nvr2 are the covariance estimates of the state space form of the 
STF Abermule model; q1 and q2 are the variances used in gain and variance updating.  
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 In a further experiment 5000 Monte Carlo runs were performed with STF 
parameters and hyper-parameters varied. Likelihood weights for each realisation were 
derived using equations (1)–(2) for the 1998 calibration period and used to derive 
quantiles for the forecasts. Figure 3 shows the median estimates of 5 h ahead forecasts 
for Abermule during the Autumn 1998 flood, obtained from the 5000 MC simulations. 
The darkest shaded areas denote 0.95 confidence bands for the median. It is worth 
noting that these confidence bands are very narrow, as the estimated STF model 
structure obtained using the RIV procedure from the Captain toolbox is well identified 
(Romanowicz & Young, 2003). Also the estimate of the variance of the predictions, 
derived using the same weights (equations (1)–(2)), is shown in a lighter shaded tone 
in Fig. 3. The online updated variance for the predictions enables the variance of the 
predictions together with 0.95 confidence bands to be estimated (lightest shading). We 
overlaid the resulting 0.95 confidence bands for the predictions with forecast median 
and forecast variance to compare the resulting uncertainty. 
 Similar results were obtained for Meifod. The predicted stages at Abermule and 
Meifod then provide the upstream inputs for flood routing to Montford and Buildwas. 
Initially, the models for Montford and Buildwas were run with varying model structure 
and hyper-parameters and with input uncertainties not accounted for. Figure 4 shows 
the resulting model forecasts for Buildwas for the validation period in November 2000, 
obtained from 5000 simulations of the sequential model without input uncertainty.  
 In order to analyse the propagation of the uncertainties of the model input through 
the system, the Montford model was run 10 000 times for a 16-h ahead forecast, to 
allow for uncertainty in the input water levels and transfer function parameter values. 
The 10 000 runs were generated by choosing 1000 parameter sets, each of which was 
driven with 10 input sequences randomly selected from 1000 MC 5-h ahead forecasts  
 
 

 
Fig. 3 Validation stage of rainfall-water level model for Abermule, River Severn, with 
updating of gain and variance, October 2000: the solid line denotes the 5-h-ahead 
forecast median obtained from MC simulations; the dotted line denotes the 
observations; the lightest shaded area denotes 0.95 confidence bands based on the 
estimated 0.95 variance quantile added to the median forecast; darker shading denotes 
estimated 0.95 confidence bands based on the median standard deviation added to the 
median forecast; darkest shading denotes 0.95 bands for the forecast median. 
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Fig. 4 Validation stage of rainfall-water level model for Buildwas, River Severn, with 
updating of gain and variance, 1 November 2000: the solid line denotes the 32-h-
ahead forecast median obtained from MC simulations; the dotted line denotes the 
observations; the lightest shaded area denotes 0.95 confidence bands based on the 
estimated 0.95 variance quantile added to the median forecast; darker shading denotes 
estimated 0.95 confidence bands based on the median standard deviation added to the 
median  forecast; darkest shade denotes 0.95 bands for the forecast median. 
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Fig. 5 Illustration of uncertainty propagation in the rainfall–water level model for 
Buildwas, River Severn, the solid line denotes the 32-h-ahead forecast median 
obtained from MC simulations; the dotted line denotes the observations; the lightest 
shaded area denotes 0.95 confidence bands based on the estimated 0.95  variance 
quantile added to the median forecast; darker shading denotes estimated 0.95 
confidence bands based on the median standard deviation added to the median 
forecast; darkest shade denotes 0.95 bands for the forecast median. 

 
 
at Abermule and Meifod. Finally, the Buildwas model has been run for a lead time of 
32-h ahead with 10 000 realizations of the joint variation of the Montford 16 h ahead 
forecasts and Montford-Buildwas parameters and hyper-parameters (again using 1000 
parameters sets, each of which is driven by 10 input sequences, randomly selected 
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from those available at Montford). The resulting confidence bands for forecast water 
levels at Buildwas are shown in Fig. 5. This result shows forecast uncertainties that are 
larger than before, mainly due to the influence of the input variability, derived from the 
estimates of the Montford forecast variance. 
 
 
CONCLUSIONS 
 
In most forecasting problems for real catchments, maximization of forecast lead times 
requires the propagation of uncertainty through a cascade of rainfall–runoff and flow 
routing components. Given the nonlinear gain components within the uncertainty 
cascade, confidence bands for the forecasts were assessed using MC simulation and the 
GLUE methodology. The explicit conditioning of the results on input uncertainty gave 
much wider confidence bands, with variability related to the variability of the 
estimated variance of the forecast at Montford, due to the choice of the quantiles 
related to the estimated forecast uncertainty. This work indicates the importance of the 
model structure uncertainty and it will be followed by the comparison with the 
propagation of uncertainty in the full model of the sequential system. 
 
 
Acknowledgements This work was done as a part of the EPSRC project “Predicting 
the probability of flooding over long reaches (including real time applications)” 
(GR/R66044/01) and the UK Flood Risk Management Research Consortium Research 
Priority Area 3 on Real-time Forecasting.  
 
 
REFERENCES 
 
Beven, K. J. & Binley, A. (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol. 

Processes 6, 279–298. 
Beven, K. J. (2005) A manifesto for the equifinality thesis. J. Hydrol. (in press). 
Kalman, R. (1960) New approach to linear filtering and prediction problems. ASME Trans. J. Basic Engng, 82-D, 35–45. 
Krzysztofowicz, R. (2002) Bayesian system for probabilistic river stage forecasting. J. Hydrol. 268, 16–40. 
Papoulis, A. (1965) Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York, USA. 
Romanowicz, R. J. & Beven, K. J. (2005) Comments on generalised likelihood uncertainty estimation. Reliability Engng 

and System Safety (in press). 
Romanowicz, R. J. & Young, P. C. (2003) Data Assimilation and uncertainty analysis of environmental assessment 

problems—an application of transfer function and generalised likelihood uncertainty estimation techniques, 
Reliability Engng and System Safety 79, 161–174. 

Romanowicz, R. J., Young, P. C. & Beven, K. J. (2004) Data assimilation in the identification of flood inundation models: 
derivation of online multi-step ahead predictions of flows. In: BHS International Conference: Hydrology, Science 
and Practice for the 21st century (ed. by B. Webb, N. Arnell, C. Onf, N. MacIntyre, R. Gurney & C. Kirby), 1,  
348–353. 

Young, P. C. (1984) Recursive Estimation and Time Series Analysis. Springer-Verlag, Berlin, Germany. 
Young, P. C. (2002) Advances in real-time flood forecasting, Phil. Trans. R. Soc. London 360, 1433–1450. 
Young, P. C. (2003) Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale. 

Hydrol. Processes 17, 2195–2217. 
 


