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Abstract The objective of this research was to examine the influence of the 
spatial variability of precipitation data from different sources on the accuracy 
of runoff simulation. In this study, interpolated precipitation by external drift 
kriging and conditional simulated precipitation based on turning band simula-
tion are used to represent the spatial variability of precipitation. Also, the 
precipitation is averaged over different spatial scales ranging from 4 km2 to 
614 km2. The original and averaged precipitation is used as a main forcing 
input in a conceptual distributed rainfall–runoff model. An automatic calibra-
tion method based on the combinatorial optimization algorithm simulated 
annealing is applied. Also, the aggregated Nash-Sutcliffe coefficients at 
different time scales are used as objective function in the study. The simulated 
hydrographs obtained using original and averaged precipitation are analysed 
through comparisons of the Nash-Sutcliffe coefficient and other goodness-of-
fit indexes. By means of them, the influence of spatial variability of 
precipitation data on the accuracy of simulated runoff is assessed. 
Key words conditional simulation; distributed modelling; simulated annealing;  
spatial variability 

 
 
INTRODUCTION 
 
Hydrological modelling and forecasting require precipitation data as one of the most 
important inputs. Precipitation often varies significantly over space and time within a 
basin. Thus in a rainfall–runoff model, the accurate knowledge of precipitation is 
needed for an accurate river discharge estimation. This is due to the fact that precipi-
tation plays a vital role in determining surface hydrological processes (Haddeland et 
al., 2002). For example, the effect of the spatial variability of precipitation on the 
response of small basins has been investigated by many researchers using either 
observed rainfall (Obled et al., 1994; Lopes, 1996; Liang et al., 2004) or stochastic 
precipitation models (Wilson et al., 1979; Krajewski et al., 1991). Rationally, point 
measurements of raingauge accumulations that are distributed in space over the river 
basin are converted to areal rainfall using interpolation techniques like kriging, 
Thiessen polygons, and the inverse distance method. In contrast, weather radar offers 
enormous potential for hydrological applications because it is an important source for 
rainfall amount distribution over space and time and covers large regions (Smith et al., 
1996; Finnerty et al., 1997). Based on the previous research outcomes, raingauge 
precipitation is still an important source of data for improving the radar and its 
operational purposes.  
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 The purpose of the present study is to investigate the impact of spatial variability 
of precipitation on the hydrological modelling results for a mesoscale catchment. 
Precipitation interpolated by external drift kriging and conditional simulated 
precipitation based on turning band simulation were used to represent the spatial 
variability of precipitation. The distributed HBV-IWS rainfall–runoff model was 
applied to carry out the study objectives. The Upper Neckar catchment was selected as 
a test catchment. The model performance was assessed through the analysis of the 
simulated hydrographs and the computation of goodness-of-fit indexes. 
 
 
FRAMEWORK OF THE ANALYSIS 
 
Study catchment description 
 
The Upper Neckar catchment is located in western Germany. Figure 1 shows the study 
area together with the Neckar River and Plochingen gauging station. The area covered 
by the Upper Neckar catchment is about 4000 km2, which is approximately 30% of the 
whole Neckar catchment. The maximum and minimum elevation of the catchment are 
1000 m a.s.l. and 250 m a.s.l, respectively.  
 The continental and oceanic climate has an impact on the weather of the study 
area. This is due to the prevailing westerly winds within the region and the impact of 
the Atlantic Ocean, which is relatively strong. The second major impact on the climate 
is the topography. 
 In the Upper Neckar catchment the mean annual precipitation is 950 mm and ranges 
from 700 mm to 1680 mm. The mean daily temperature in the catchment is 8.8°C. 

 

 
Fig. 1 The catchment study area and the Neckar River (the number within each sub-
catchment indicates the area in km2). 
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The natural vegetation in the Upper Neckar catchment has been influenced by human 
activities; part of the natural vegetation was replaced by forest (commercial) and arable 
land. Coniferous trees are the most dominating vegetation, especially in the western 
part, close to the Black Forest. The mean runoff at the outlet gauging station 
Plochingen is 46.93 m3 s-1.  
 
 
Brief description of the model 
 
The modified HBV-IWS rainfall–runoff model was applied in this study. The HBV-
IWS model was developed in the Institute of Hydraulic Engineering, University of 
Stuttgart, Germany, based on the HBV model (Bergström & Forsman, 1973) concept. 
Originally, the HBV model was developed at the Swedish Hydrological and 
Meteorological Institute (SMHI) for runoff simulation and hydrological forecasting, 
but the fields of application have increased steadily over the last decades.  
 The HBV-IWS rainfall–runoff model is a semi-distributed conceptual model. The 
area to be modelled is divided into a number of sub-catchments and each sub-
catchment is further divided into a number of zones. The dynamic of the different flow 
components at the sub-catchment scale is conceptually represented by two reservoirs. 
The Upper reservoir simulates the rapid and delayed interflow in the sub surface layer, 
while the lower reservoir represents the base flow. Both reservoirs are connected in 
series by a constant percolation rate and are considered linear with a recession 
coefficient. Finally there is a transformation function for smoothing the generated 
flow. The transformation consists of a triangular weighting function with one free 
parameter. In the existing HBV-IWS model structure, the sub-catchment is divided 
into a number of zones according to elevation, land use or soil type or combinations of 
the mentioned basin characteristics. However, the distribution of each sub-catchment 
into different elevation and land categories is not spatially fixed. It implies that 
geographical information is taken from actual physical data, and is represented in each 
sub-catchment only as a percentage of the whole area for that sub-catchment, without 
keeping track of exactly where that percentage is located in space.  
 In the modified model version, the necessary modifications were undertaken to 
account for detailed basin characteristics and highly resolved meteorological variables 
in accordance with the objectives of the study. The HBV-IWS rainfall–runoff model 
was configured into a raster (grid based) form. Also, in the modified model structure 
the sub-catchment may be divided into a number of regular grids. The advantage of 
representing the sub-catchment in raster form lies in the ability to utilize high spatially 
resolved rainfall data and to obtain the detailed configuration of the catchment. It 
should be noted that the main difference between the original HBV model and the 
modified version is the use of regular grid cells as primary hydrological unit. Due to 
the modification in the model structure, snow melt, soil moisture and evapotranspiration 
routines are calculated for each grid cell individually. The runoff concentration 
processes, which are represented conceptually by reservoirs, were kept unchanged at 
the sub-catchment scale in order to restrict the number of model parameters to be 
optimized. 
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Data requirement 
 
The basic input elements for the model are precipitation and air temperature. Different 
GIS based digital data for the catchment were obtained and appropriate processing 
techniques (resampling, reclassifying, and conversion of vector map into raster map) 
were applied in order to establish the distribution of important catchment 
characteristics within the study area. These data include the Digital Elevation Model 
(DEM) (30 m × 30 m horizontal spatial resolution), land use/land cover map 
(LANDSAT93 satellite images), soil map (1:200 000 scale) and river network (vector 
map, 1:50 000), which were obtained from the State Institute for Environmental 
Protection (LfU, Baden-Württemberg).  
 Daily precipitation and daily mean air temperature covering the study area were 
obtained from the German Weather Service while the daily mean discharge data for the 
available gauging stations was also obtained from LfU, Baden-Württemberg. 
 The data obtained from the meteorological stations were basically point data, and 
there was a need to interpolate them in order to calculate areal values for each grid. 
The external drift kriging method (Ahmed & de Marsily, 1987) was chosen for 
interpolation so that the orographic effect is taken in to account by using the 
topography as an additional variable. This method was utilized to generate spatially 
distributed precipitation and temperature data at 1 × 1 km grid resolution. Because the 
temperatures show a fairly constant lapse rate, topographic elevation was used as the 
drift variable for interpolating the temperature. It should be noted that the rate at which 
precipitation decreases changes with increase in elevation. The square root of the 
topographic elevation was assumed as a good approximation to account for such 
variation and it was used as the drift variable for precipitation. The collected DEM, 
soil map and land use map were aggregated at 1 × 1 km spatial resolution. This 
resolution is also the one adopted as the model grid resolution. 
 
 
MATERIALS AND METHODS 
 
The study catchment was divided into thirteen sub-catchments according to the avail-
able gauging stations. The area of the sub-catchments ranges from 120 km2 to 614 km2 

(Fig. 1). Then the modified HBV-IWS model was set up for the study catchment based 
on the identified sub-catchment scheme. The interpolated precipitation was averaged 
over different spatial scales (2 × 2 km, 3 × 3 km, 4 × 4 km and 5 × 5 km) and at the 
sub-catchment scales. Two different simulation experiments were conducted to predict 
the uncertainty due to spatial variability of precipitation. In the first experiment the 
model was calibrated on 1 × 1 km model resolution with all the forcing variables at the 
same model resolution and run using the averaged precipitation over different spatial 
resolutions. In the second simulation experiment, the model was calibrated with the 
uniform precipitation obtained from each sub-catchment. Hence, the model grids 
located within each sub-catchment were assigned the same uniform averaged 
precipitation obtained for the individual sub-catchment. Thereafter, the calibrated 
model was run using the interpolated precipitation at 1 × 1 km spatial resolution and 
the averaged precipitation over different spatial scales ranging from 4 km2 to 25 km2. 
In this simulation experiment the model resolution was also attained at 1 × 1 km.  
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 Finally, a set of simulations was carried out using the conditionally simulated 
precipitation. The conditional simulated precipitation (Cressie, 1993) was produced by 
the means of turning band simulation was utilized in the calibrated model using the  
1 × 1 km grid precipitation at 1 × 1 km model resolution.  
 
 
Calibration of the model 
 
The automatic calibration of the distributed version of the HBV-IWS model was 
accomplished based on the concept of hydrological response unit (geoclass). The 
geoclasses were defined on the basis of soil and land use information. The collected 
soil map (SC) and land use map (LC) was reclassified into a smaller number of classes. 
The above-mentioned basin characteristics were combined in 28 geoclasses (7 SC ×  
4 LC). The parameters used in the soil module include the field capacity, permanent 
wilting point and beta (conceptual model parameter). These parameters were optimized 
based on the geoclasses. Also, the parameter values were predefined within a feasible 
parameter interval, which was adjusted to allow different degrees of freedom. In 
addition, optimized parameters corresponding to the 28 geoclasses were assigned to 
the grids. It should be noted that grids under similar geoclasses would have the 
opportunity to receive the same value. During calibration, other parameters like degree 
day factor and threshold temperature (in the snow module) were optimized and kept 
constant through the study area while the reservoir parameters were optimized for 
individual sub-catchments.  
 
 
RESULTS AND DISCUSSION 
 
The distributed HBV-IWS model was automatically calibrated (calibration period:  
1 January 1961 to 31 December 1970) by means of the combinatorial optimization 
algorithm simulated algorithm annealing (Aarts & Korst, 1989). For maximization at 
different temporal scales (daily scale, daily scale weighted to the maximum discharge 
and annual scale), the objective function used was the aggregated Nash-Sutcliffe 
coefficients.  
 Also, the simulation results were compared using the Nash-Sutcliffe coefficient 
(R2) (Nash & Sutcliffe, 1970) given as: 
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where qo(t) is the observed daily discharge (m3 s-1), qs(t) is the simulated daily 
discharge (m3 s-1) and qm is the mean observed daily discharge (m3 s-1).  
 The Pearson correlation coefficient (Corr.) was computed to measure the strength 
of the linear relationship between simulated and observed discharge time series.  
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where sσ and oσ  are the standard deviations of simulated and observed discharge, 
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respectively. sq  and oq  are the mean of simulated and observed daily discharge, 
respectively. 
 The relative accumulated difference and the peak error were also computed to 
judge the performance of the model with regard to maintaining the water balance and 
its peak flow estimation capacity. Accordingly the relative accumulated difference 
(RD) is computed as: 
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and the peak error is equal to: 
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where (max)sq is the mean annual maximum simulated discharge and (max)oq is the mean 
annual maximum observed discharge.  
 The mentioned goodness-of-fit indexes were computed on an annual and seasonal 
basis for the overall validation period (1 January 1971 to 31 December 1980).  
 The calibrated model, using the 1 × 1 km grid precipitation was utilized with aver-
aged precipitation for the validation period. Table 1 summarizes the model perform-
ance at two selected sub-catchments namely Horb and Plochingen (outlet gauge). Also, 
it is noticed that no significant differences were observed in the calibrated model 
performance using 1 × 1 km grid precipitation and averaged precipitation at different 
spatial scales. This may be due to the fact that the averaged precipitation was obtained 
from the interpolated precipitation (external drift kriging) which is already a smoothed 
rain field. Figure 2 shows the model performance at Horb in different seasons for the 
validation period. Meanwhile, the model performance was comparatively poor in the 
summer season due to the convective precipitation, which was not well captured by the 
existing coarse raingauge networks.   
 The distributed HBV-IWS model was calibrated in this simulation experiment 
using averaged precipitation from each of the sub-catchments. The model resolution 
during this calibration was also 1 × 1 km. The calibrated model was utilized with the 
precipitation averaged at different spatial scales for the validation period. Table 2 
 
 
Table 1 Model performance with different resolutions of precipitation utilized to calibrated model using 
the 1 × 1 km grid precipitation.  

Resolution of  Catchment #3: Horb Catchment #13: Plochingen 
precipitation R2 Corr. RD Peak R2 Corr. RD Peak 
(km2)    error    error 
4 0.752 0.874 0.121 –0.113 0.796 0.896 0.087 –0.099 
9 0.752 0.875 0.121 –0.113 0.796 0.896 0.087 –0.099 
16 0.752 0.874 0.122 –0.113 0.796 0.896 0.087 –0.100 
25 0.752 0.874 0.123 –0.120 0.796 0.894 0.088 –0.101 
420.18 [#3] 
472.05 [#13] 

0.751 0.870 0.124 –0.125 0.792 0.897 0.087 –0.114 

1 0.753 0.874 0.116 –0.112 0.798 0.899 0.081 –0.099 
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Fig. 2 Model performance at Horb in different seasons for the validation period. 

 
 
Table 2 Model performance with different resolutions of precipitation utilized to calibrated model using 
the sub-catchment averaged precipitation. 

Resolution of  Catchment #3: Horb Catchment #13: Plochingen 
precipitation R2 Corr. RD Peak R2 Corr. RD Peak 
(km2)     error    error 
1 0.748 0.874 0.127 –0.118 0.791 0.893 0.089 –0.104 
4 0.751 0.873 0.124 –0.143 0.790 0.894 0.111 –0.106 
9 0.751 0.873 0.126 –0.145 0.790 0.893 0.124 –0.119 
16 0.750 0.873 0.131 –0.133 0.790 0.890 0.119 –0.115 
25 0.750 0.869 0.130 –0.142 0.784 0.886 0.115 –0.121 
420.18 [#3] 
472.05 [#13] 

0.746 0.873 0.142 –0.150 0.763 0.894 0.114 –0.168 

 
 
summarizes the model performance in relation to the present simulation experiment. 
Comparing the results of the two experiments, it can be noticed that the model 
performance deteriorated while the model was calibrated with sub-catchment averaged 
precipitation instead of 1 × 1 km grid precipitation.  
 The conditional simulated precipitation (Cressie, 1993) by means of turning band 
simulation, was utilized for the calibrated model using the 1 × 1 km grid precipitation 
at 1 × 1 km model resolution. A detailed representation of the performance of the 
HBV-IWS model with correspondence to the maximum, minimum and mean of 
several realizations of simulated precipitation is given in Fig. 3 for selected flood 
peaks in the validation period at the Horb gauge. The hydrograph resulting from the 
maximum of the realizations of the simulations was worse when considering the entire 
period; however it was better if only the floods were considered, as Fig. 3 shows. 
 
 
CONCLUSIONS AND FUTURE WORK 
 
A new raster (grid) based version of the HBV-IWS model was developed in order to 
assess the influence of the spatially distributed precipitation variability on the accuracy 
of simulated runoff.  
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Fig. 3 Comparisons between calculated discharges from interpolated precipitation and 
conditionally simulated precipitation with observed discharge at Horb in the validation 
period. 

 
 
 The application to the Upper Neckar catchment showed that there is no significant 
difference in the calibrated model performance using 1 × 1 km grid precipitation and 
averaged precipitation on different spatial scales. This may be due to the fact that the 
averaged precipitation was obtained from the interpolated precipitation (external drift 
kriging) which is already a smoothed rain field and existence of the coarse raingauge 
network. In contrast, minimal model performance improvements were observed when 
the calibrated model was utilized with comparatively detailed precipitation data. The 
model performance slightly deteriorated when the model was calibrated with sub-
catchment averaged precipitation instead of 1 × 1 km grid precipitation. 
 Conditional simulation assures a more accurate representation of rainfall 
variability as compared to interpolated rain fields due to smoothing effects. Peak 
estimations derived using simulated precipitation are superior to the same obtained 
using interpolated precipitation. Spatial simulation is thus reasonable for flood 
forecasting.  
 Future research will be performed to obtain a better perspective of the precipitation 
integration on the predictive uncertainty of a rainfall–runoff model using radar rainfall 
data in addition to raingauge data.  
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