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Abstract Owing to the nonlinearity of the rainfall–infiltration–runoff 
relationship, soil water content in the river basin represents a key environ-
mental variable to be monitored for flood management purposes. In this study 
an attempt was made to sequentially assimilate into a simple lumped 
conceptual rainfall–runoff model an estimate of the soil saturation level. The 
estimate was obtained from: (a) field measurements of water table depth; and 
(b) backscattering of the radar signal emitted by active microwave sensors on 
board ERS-1. The assimilation scheme is based on an extended Kalman filter 
as both simulated and observed soil saturation states are prone to errors. The 
magnitude of the internal state updating thus depends on the ratio of errors on 
the observations and the model. The analysis of a series of ERS-1 SAR images 
showed that hydrologically relevant information could be retrieved from radar 
imagery by averaging the backscattering coefficient over clusters of pixels for 
which the sensitivity towards changing moisture conditions is significant. The 
assimilation procedure is performed on the experimental Alzette River basin 
(1175 km2). Improvements of model performance through data assimilation 
demonstrate the usefulness of field measurements and remote sensing 
observations in flood forecasting applications. 
Key words  data assimilation; flood forecasting; Kalman filter; Synthetic Aperture Radar 

 
 
INTRODUCTION 
 
There is a growing interest in the capabilities of Earth Observation (EO) data for 
improving the effectiveness of operational flood forecasting systems. Thus, both 
rainfall–runoff and flood propagation models take benefit from the availability of 
spatially distributed EO data, especially in ungauged basins. Among other applica-
tions, remote sensing observations can also be used as parametric input data, as initial 
condition data and as time-varying hydrological state and flux data (Walker, 2005). 
However, there is still significant uncertainty over the reliability of spaceborne 
microwave sensors such as Synthetic Aperture Radar (SAR) to provide accurate soil 
moisture data (Schmugge et al., 2002). In a recent OECD report on the opportunities 
and challenges facing the use of space applications in flood management (OECD, 
2005), it is stated that the measuring of soil moisture by spaceborne sensors may not be 
available on an acceptable operational basis for another 10 years. Wagner & Pathe 
(2005) also suggested that in order to advance soil moisture retrieval at the field scale, 
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new field experiments with novel technologies are needed. At the basin scale, 
significant improvements in reliability and repeatability of data extraction may 
eventually rely on passive microwave techniques. The apparent failure of SAR to 
provide accurate soil moisture values can be explained by the fact that the system 
parameters (wavelength, polarization, incidence angle) of the currently available 
spaceborne active microwave sensors are by no means ideal for soil moisture retrieval. 
The apparent lack of suitable remote sensing methods for soil moisture estimation 
represents a serious data gap in flood forecasting systems because the monitoring of 
this key environmental variable would help assessing the readiness of a river basin to 
generate storm runoff during rainfall events. On a more positive note, previous studies 
(Houser et al., 1998; Francois et al., 2003) have shown that, despite the aforemen-
tioned limitations of available microwave techniques, average soil moisture observa-
tions at basin scale could still be successfully used to improve hydrological model-
based discharge predictions. This has been achieved through the integration of 
remotely sensed soil moisture information in a variety of rainfall–runoff models, 
ranging from very simple lumped conceptual (Aubert et al., 2003), to spatially 
distributed physically-based models (Pauwels et al., 2001). The scope of this study is 
therefore to use remote sensing observations and ground-based measurements of water 
table depth to retrieve representative estimates of the basin averaged saturation degree 
and to integrate the observed soil saturation indices of soil saturation into a conceptual 
rainfall–runoff model in an attempt to enhance the reliability of flood forecasts of the 
Alzette River at Ettelbrück station (Grand-Duchy of Luxembourg, Europe). 
 
 
STUDY AREA AND AVAILABLE DATA 
 
At its outlet in Ettelbrück, the Alzette River basin has a drainage area of 1175 km2. 
Hourly discharge data are available from 1996 to the present. These were used to 
calibrate the rainfall–runoff model. Also, the daily streamflow data for the period 
1993–1995 were used to assess the performance of the integration scheme. The basin 
averaged rainfall was based on the hourly rainfall data of 12 raingauges located within 
the drainage basin. Potential evapotranspiration was determined with the Penman-
Monteith equation using the daily meteorological data from the synoptic station at 
Luxembourg airport. Also, the meteorological data are necessary to guarantee that on 
the days of satellite overpass the radar signal return is not influenced by frozen soils or 
high wind velocities on flooded areas, lakes or ponds. Based on the water table depth 
data at 10 piezometric stations scattered throughout the basin’s alluvial plain, the basin 
wetness was estimated using the soil saturation index. The index is explained in more 
detail hereafter. The EO database comprises 13 ERS-1 and ERS-2 images, acquired on 
descending pass, with nine of them during the ERS-1 Ice Phase, from 20 November 
1993 until 23 February 1994. During this phase the usual repeat cycle of 35 days was 
shortened and ERS-1 operated with a repeat cycle of 3 days. The high revisit frequency 
represents an idealized scenario within which radar images are readily made available 
for observing environmental variables from the space at a fine temporal resolution 
level.  
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ESTIMATION OF THE BASIN SATURATION STATE 
 
The sequential assimilation of observations represents a possible step towards 
improving the functional accuracy of hydrological models. In the present study two 
data sets were assimilated into the rainfall–runoff model in order to control the 
hydrological model. These data sets are a flood plain based soil saturation index 
obtained from the piezometric measurements, and a radar backscattering coefficient 
averaged over selected pixels. In lumped models the integrated data sets need to be 
representative of the entire catchment at a given time. 
 
 
Field data 
 
The time variation of water content in the first few centimetres of the basin’s soil is 
loosely connected to the time variation of the water budget over the entire basin. 
Fluctuations of the water table depth in the flood plain are more representative in terms 
of time variation of the basin hydraulic state (Pfister et al., 2003) because the water 
table levels reflect the behaviour of a characteristic fraction of the basin. However, 
unlike more aggregate components such as river discharge, individual point 
measurements of water table depth do not fully account for the basin saturation state. A 
spatial averaging procedure is therefore required for a thorough basin scale estimation. 
Based on the recorded minimum and maximum water table depth at available 
piezometers during the time period 1993–1994, a regional mean soil saturation index 
(SSI) is computed (Matgen et al., 2005b). When the water table reaches its minimum 
depth during the January 1994 flood, the SSI is 100% i.e. it is assumed that the soil is 
completely saturated. With the alluvial groundwater depletion during dry weather 
phases, the SSI decreases linearly until the measured water table depth reaches its 
maximum value (SSI = 0%). The simultaneous evolution of the computed water budget 
at a catchment scale and the mean SSI, as well as the strong correlation between storm 
runoff coefficients and SSI for recorded rainfall–runoff events, support the assumption 
that the estimation of a flood plain based SSI provides valuable information on the 
expected runoff generation during storm events. 
 
 
Remote sensing data 
 
Matgen et al. (2005b) developed a methodology based on Principal Components 
Analysis (PCA) and k-means clustering (Ramos, 2001) to convert radar backscattering 
signal into hydrologically relevant information (i.e. the regional flood plain based SSI). 
Because runoff generation is strongly controlled by deeper layers, especially in regions 
with a temperate oceanic climate, the processing of the ERS SAR scenes is limited to 
the flood plain image subset. This is due to the fact that in the shallow groundwater 
area there exists a strong bond between the water table depth and the water content in 
the first few centimetres of the upper soil layer (Chen & Hu, 2004). To separate the 
soil moisture contribution to the backscattering signal from the influence of other 
physical factors, it is important to process a series of images with homogeneous 
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topography and stable land use. Within the study area the topography is characterized 
by small elevation changes with a permanent low-height pasture dominating 
homogeneous land use. Hence, during the winter months, the first Principal 
Components are dominated by the variance related to areas with changing back-
scattering responses and are thus controlled by subsurface and surface water dynamics. 
The methodology allows outlining pixel clusters (50 × 50 m microplots) that show a 
backscattering behaviour that is related to moisture conditions. Also, instead of using 
the subjectively delimited soil parcels or calculating mean backscattering coefficients 
over large areas, the proposed segmentation approach automatically provides 
distinctive hydrological response units. By averaging the radar signal over the pixels of 
categorized classes, the robustness of the empirical linear relationships between radar 
backscattering and ground-based estimates of soil saturation is being strengthened. 
This methodology is similar to the one proposed by Quesney et al. (2000) who 
estimated the soil moisture at basin scale by averaging the radar signal only over 
“sensitive targets”, i.e. pixels with significant sensitivity to surface soil moisture. 
 
 
ASSIMILATION PROCEDURE 
 
Rainfall–runoff Model 
 
The hydrological model used in this study is an 11-parameter lumped conceptual 
model (Fig. 1), which simulates hourly discharge using rainfall (Rtot) and potential 
evapotranspiration (ETP) as input data. The conceptual model can be considered as a 
modified version of the HBV-96 model (Lindström et al., 1997). The conceptual 
model structure of the soil reservoir was adapted so as to allow for the integration of 
observed soil saturation state variables. The soil reservoir module is characterized by 
the following parameters namely maximal storage capacity, Smax [mm], a parameter 
of nonlinearity, b [–], controlling the infiltration capacity, a parameter lp [–], giving the 
fraction of Smax below which ETP is constrained by S(t) and the maximum 
percolation rate, p [mm day-1]. Center and alp are shape parameters that describe the 
percolation function. The modified soil reservoir module is drained by evaporation and 
deep percolation fluxes. The rainfall is divided into two terms; the first part fills the 
soil reservoir module, while the second part consists of the net rainfall that fills the two 
routing reservoirs (linear baseflow reservoir and nonlinear fast runoff reservoir). The 
model output largely depends on the basin saturation state since the fraction of the total 
rainfall that fills the soil reservoir module and the fraction of net rainfall that fills the 
fast runoff reservoir module both depend on the level of the soil reservoir. The 
proposed assimilation scheme can be implemented in a large range of lumped 
conceptual models. The objective function that was used to calibrate the model is the 
Nash-Sutcliffe criterion. The SCE-UA algorithm (Duan et al., 1992) was adopted to 
find the set of parameter that gives the highest performance measure for the time 
period 1996–1998 of hourly streamflow measurements. The Nash-Sutcliffe criterion 
calculated on the streamflows is 93.2% for this simulation. Figure 2 shows the time 
variation of the level of the soil reservoir as well as the agreement of fit between 
simulated and observed discharge. 
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Fig. 1 Schematic representation of the lumped conceptual rainfall–runoff model. 
 
 

 

Fig 2 Simulation of the soil saturation level and discharge over the calibration period 
September 1996—April 1998. 

 
 
Sequential assimilation  
 
The state of the model that represents the storage water in the soil reservoir (i.e. S(t)) 
can be updated with field measurements and remote sensing observations. The method 
is based on the assumption that a better simulation of the model states at day j will 
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improve the accuracy of the model states at days j + 1, j + 2, etc. (Aubert et al., 2003). 
The model gives a state estimate with high temporal resolution, but the values are 
altered by the accumulation of errors. The field measurements and remote sensing 
observations give alternative estimates that may be more accurate, but due to 
commensurability errors it seems impossible to accurately estimate how representative 
these estimates of the basin-averaged saturation level are. Thus, the representation 
error is typically the main error source that needs to be considered (Sorensen & 
Madsen, 2004). After each simulation step, the difference between observed and 
simulated values is partially corrected. Therefore, the uncertainties of the observations 
and simulations are taken into account by calculating a correction factor using the 
extended Kalman filter (Francois et al., 2003). The magnitude of the correction 
depends on the ratio between observation and model errors. Hence, the best estimate of 
the exact saturation state is based on the available information from the two sources of 
information, namely the modelled and the observed saturation levels. Thus, the ratio 
(Qr) of the model variance over the observation variance is considered as an additional 
calibration parameter due to the fact that the data at hand does not allow the fixing of 
observation and modelling errors a priori. A control simulation without any data 
assimilation can be considered as the baseline run i.e. it is assumed that the real-time 
observations contain no valuable information. On the contrary, if a direct integration 
takes place (“hard updating”), it is assumed that the model contains no information at 
all. Besides improving the reliability of the model forecast through a better estimation 
of the antecedent moisture conditions, the sequential assimilation allows for the 
increase of the internal consistency of the conceptual rainfall–runoff model. Pauwels 
et al. (2001) stated that one of the main reasons for adopting data assimilation 
techniques is to reduce the need for model calibration and to reduce the effect of 
uncertainty in the model output as a result of the equifinality of different sets of 
parameters. Francois et al. (2003) demonstrated that the sequential assimilation of 
SAR data could also correct for some errors in the input data (precipitation and 
evapotranspiration). 
 
 
Observation models 
 
The aforementioned interpretation of the SSI and the radar backscattering coefficient 
suggests that these observations are related to the level of the soil reservoir of the 
conceptual model. As these relationships are not direct, the first step in data 
assimilation consists of the establishment of the empirical relationship between the 
level of the soil reservoir and both the measured SSI value and each hydrological 
response unit’s average backscattering signal. A linear relationship is chosen in order 
to relate the SSI to the model state whenever a measurement is available (Matgen 
et al., 2005a). Linear relationships are also found between the simulated saturation 
level of the soil reservoir and the mean backscattering of the three hydrological 
response classes that proved to be significantly related to the SSI (Fig. 3). Linear 
regression is acceptable as shown by the coefficients of determination ranging between 
0.83 and 0.87. In order to separate the dielectric effect (related to soil moisture) from 
the specular effect (related to the specular backscattering on the water surface), the 
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Fig. 3 Relationship between the state of the soil reservoir (S) and each hydrological 
response unit’s mean radar backscattering coefficient. 

 
 
radar backscattering values from SAR images showing large scale flooding within the 
study area, were excluded from the regression analysis. 
 
 
RESULTS AND DISCUSSION 
 
In order to measure the efficiency of the assimilation procedure, the simulated 
discharges of the Alzette River are compared to the observed discharges with a 
confidence level in the model compared to the observations varying from Qr = 10-6 (no 
assimilation) to Qr = 106 (forced mode). During model evaluation, two types of 
performance measures are considered, namely the Nash-Sutcliffe criterion and the 
efficiency criterion with a lead time of prediction of 1 h (Aubert et al., 2003). The 
latter compares the mean accuracy of the 1 h forecasts of the model with and without 
assimilation. As the model performs reasonably well even without assimilation, the 
improvement margin of the Nash-Sutcliffe criterion is rather small and the effect of the 
assimilation is less visible (Aubert et al., 2003). For each source of information, the 
results of the error ratio giving the highest efficiency is plotted in Fig. 4. It is shown 
that the updating of the level of the soil reservoir with observations obtained from field 
measurements and radar imagery allows for the improvement in the high flow 
simulation exercise. The Nash-Sutcliffe performance measure increases by 1.7% and 
1.1%, respectively, and the maximum effectiveness criterion is 7% and 4.5%, 
respectively. The updating based on the piezometric measurements leads to higher 
performances than the assimilation of the estimates derived from EO data. This result 
could be explained by the higher temporal resolution of the piezometric measurements. 
Hence, during the ERS-1 Ice Phase, the integration of estimates of soil saturation 
slightly increased the performances of the model. Because of the high correlation 
between the observations and the simulated levels of the soil reservoir, the magnitude 
of the corrections being undertaken is rather low and no substantial improvement could 
be achieved. On the whole period, the three soil saturation estimates of the soil 
saturation are consistent and thus, despite the slight increase of the Nash-Sutcliffe 
performance measure and the effectiveness criterion, the added value provided by the 
two sources of observations appears to be not highly significant. Furthermore, it can be 
noted that the hard updating of the remotely sensed saturation levels provided the best 
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lower confidence level might be related to the limited number of observation points 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Simulated soil saturation levels and stream flows with and without data 
assimilation: (a) assimilation of a flood plain based soil saturation level obtained with 
piezometric measurements, and (b) assimilation of an average backscattering 
coefficient obtained over selected pixels with active microwave sensing. 

 
 
results, whereas some intermediate value of Qr gave the best results with the field 
measurements of SSI. In the forced mode the model is over-corrected and the 
assimilation of the SSI degrades the model performance (efficiency criterion of –5%). 
This result suggests that the confidence given to the SSI should not be absolute. The 
lower confidence level might be related to the limited number of observation points 
within the study area. Finally, the level of confidence given to the observation data as 
related to the level of the soil reservoir has to be chosen very carefully since dramatic 
decreases of the model performance may result from over-corrections of the model. 
 
 
 
CONCLUSION 
 
The present study showed that hydrologically relevant information for watershed 
management was derived from SAR imagery through the use of sensitive targets, i.e. 
specific hydrological response units with significantly different radar responses under 
changing moisture conditions. The relevance of the time variation of average 
backscattering coefficients is further demonstrated by the strong relationship between 
radar responses and the level of soil reservoir in a previously calibrated hydrological 
model. Estimates of soil saturation that were obtained with field measurements of 
water table depth and remote sensing observations were successfully used to improve 
discharge predictions through data assimilation. However, further improvement in 
reliability and repeatability of data extraction from SAR imagery is required if it is to 
be routinely used to update the states or parameters of operational flood forecasting 
models. 
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